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BACKGROUND

* Integrating phone-based GPS data into digital intervention provides a low burden 
method of seeing how daily travel relates to drinking and intervention response. 

* In prior work, GPS features, such as greater radius of gyration (ROG: how far a 
person travels from a “central” location), were key predictors of same-day drinking. 

* Sample-level relations, however, may not represent any individual or subgroup.
 
* Identifying person- & subgroup-specific patterns can inform tailored intervention. 

OBJECTIVE

     This exploratory study used a data-driven method to identify network relations 
between phone-based GPS features and alcohol use in a digital alcohol 
intervention at sample-, subgroup-, and person-levels to guide tailored intervention. 

METHODS

Digital Alcohol Intervention (Suffoletto et al., 2023)                   

Combined with smartphone GPS data collection during 12-wk intervention
   

PARTICIPANTS

Young adults (ages 18-25) in the MATCH Study clinical trial (NCT02918565) were 
asked to participate in a phone sensor substudy. Eligible individuals reported >1 
“binge drinking” occasion in the past 30 days and an Alcohol Use Disorder 
Identification Consumption (AUDIT-C) score of >3 for women and >4 for men). 
Participants collected daily smartphone GPS data and text message reports of 
alcohol use for 14 weeks. Analyses included cases with adequate data (n=33).

• 72.7% Female; ages 18-25, mean age=22.4 (SD=2.0)
• 48.5% White, 21.2% Black, 15.2% Hispanic, 15.1% Other race/ethnicity 
• 81.8% in intervention (n=27) and 16.2% in control condition (n=6)
• Number of time points: range (78-103), mean = 97.8 (SD=6.0)

ANALYSIS PLAN

* Group Iterative Multiple Model Estimation (GIMME) network analyses included 
cases with adequate data and person-level models that converged (n=33). 

* GIMME and a subgrouping algorithm explored relations between day-level 
alcohol quantity and 5 GPS variables: radius of gyration (ROG), # of locations 
visited, # of location clusters visited, total distance traveled, and time at home. 

* Intervention status (treatment vs control) was included as an exogenous variable. 
PerturbR evaluated robustness of the identified subgroups.

RESULTS

Sample-level and subgroup associations
 * GIMME did not identify any sample-level 
paths, but did identify 3 subgroups with 
modularity=.57 (values >.30 indicate 
strong communities; supported by perturbR).

 * The 3 subgroups represented 30.3%, 21.2% 
and 12.1% of participants. 12 participants 
were not assigned to any subgroup (see Fig 1).

* All 3 subgroups had a subgroup-specific 
association involving radius of gyration (ROG): 
ROG with total distance, time at home, # of 
locations visited), indicating 
ROG’s centrality in the network.                              GIMME identified 3 subgroups

CONCLUSIONS

* Network analyses reveal heterogeneity in patterns of association between 
drinking quantity and GPS travel data, and ROG as a key predictor of alcohol use.

* ROG’s association with certain GPS features could be used to trigger context-
specific intervention for specific subgroups of young adults.

* Use of low burden phone GPS data can help personalize digital alcohol 
intervention by tailoring “content” to “context” of daily activities to maximize impact.
                                                                      Support: NIAAA R21 AA030153; R01 AA023650

Person-level associations
* Although subgroups were identified, individuals differed in network associations 
(in strength and presence) of drinking quantity with GPS-derived travel patterns.

* Figures for Person 1 & 2 show example network associations at the person-level.
Green = subgroup effect
Gray = person-specific 
            effect
Solid=contemporaneous
          effect
Dashed=lagged effect
Thickness=effect strength

* Heterogeneity at individual-
level highlights importance
of personalized intervention.


