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Abstract

Background: Digital just-in-time adaptive interventions can reduce binge-drinking events (BDEs; consuming ≥4 drinks for
women and ≥5 drinks for men per occasion) in young adults but need to be optimized for timing and content. Delivering just-in-time
support messages in the hours prior to BDEs could improve intervention impact.

Objective: We aimed to determine the feasibility of developing a machine learning (ML) model to accurately predict future,
that is, same-day BDEs 1 to 6 hours prior BDEs, using smartphone sensor data and to identify the most informative phone sensor
features associated with BDEs on weekends and weekdays to determine the key features that explain prediction model performance.

Methods: We collected phone sensor data from 75 young adults (aged 21 to 25 years; mean 22.4, SD 1.9 years) with risky
drinking behavior who reported their drinking behavior over 14 weeks. The participants in this secondary analysis were enrolled
in a clinical trial. We developed ML models testing different algorithms (eg, extreme gradient boosting [XGBoost] and decision
tree) to predict same-day BDEs (vs low-risk drinking events and non-drinking periods) using smartphone sensor data (eg,
accelerometer and GPS). We tested various “prediction distance” time windows (more proximal: 1 hour; distant: 6 hours) from
drinking onset. We also tested various analysis time windows (ie, the amount of data to be analyzed), ranging from 1 to 12 hours
prior to drinking onset, because this determines the amount of data that needs to be stored on the phone to compute the model.
Explainable artificial intelligence was used to explore interactions among the most informative phone sensor features contributing
to the prediction of BDEs.

Results: The XGBoost model performed the best in predicting imminent same-day BDEs, with 95% accuracy on weekends
and 94.3% accuracy on weekdays (F1-score=0.95 and 0.94, respectively). This XGBoost model needed 12 and 9 hours of phone
sensor data at 3- and 6-hour prediction distance from the onset of drinking on weekends and weekdays, respectively, prior to
predicting same-day BDEs. The most informative phone sensor features for BDE prediction were time (eg, time of day) and
GPS-derived features, such as the radius of gyration (an indicator of travel). Interactions among key features (eg, time of day and
GPS-derived features) contributed to the prediction of same-day BDEs.

Conclusions: We demonstrated the feasibility and potential use of smartphone sensor data and ML for accurately predicting
imminent (same-day) BDEs in young adults. The prediction model provides “windows of opportunity,” and with the adoption
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of explainable artificial intelligence, we identified “key contributing features” to trigger just-in-time adaptive intervention prior
to the onset of BDEs, which has the potential to reduce the likelihood of BDEs in young adults.

Trial Registration: ClinicalTrials.gov NCT02918565; https://clinicaltrials.gov/ct2/show/NCT02918565

(JMIR Form Res 2023;7:e39862) doi: 10.2196/39862
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Introduction

Background
Binge-drinking events (BDEs), defined as consuming ≥4 drinks
on a single occasion for women or ≥5 drinks on a single occasion
for men (National Institute on Alcohol Abuse and Alcoholism),
represent a common, risky drinking pattern, primarily seen
among young adults (aged 18 to 25 years; Centers for Disease
Control and Prevention). BDEs are associated with multiple
adverse alcohol-related harms, such as traffic fatalities and
violent behavior [1,2]. Digital behavioral interventions
demonstrate some promise in reducing hazardous alcohol
consumption among young adults [3-6]. Digital behavioral
interventions using various communication modalities (eg, app,
text messaging, and interactive voice response) can deliver
content and collect responses over time, potentially adapting
the timing and content of the intervention to specific contexts
and needs (eg, motivational enhancement after self-regulation
failure) [7]. Systematic reviews of digital behavioral
interventions generally find modest effects on reducing
unhealthy alcohol use [3-6], suggesting the need to boost the
effectiveness of technological interventions. One of the ways
to potentially increase the effects of digital intervention is to
provide just-in-time (JIT) support when it will have an optimal
impact [8] to modify drinking intentions and behavior.

Smartphone-Based Sensors to Detect BDEs
Timely intervention delivery depends on the ability to accurately
predict the imminent (ie, 1 to 6 hours prior) occurrence of a
BDE. To date, most research has focused on the simpler problem
of “detecting” an episode of alcohol use that has already started.
For example, sensors (eg, transdermal alcohol sensor) worn on
the wrist or ankle that use biological sampling can “detect” a
BDE [9,10] and provide “ground truth” for identifying BDEs
but cannot “predict” a BDE that has not yet started. Regarding
the topic of detection, a study using cognitive tasks performed
on a smartphone [11] demonstrated that it is possible to estimate
(ie, similar to detection) one’s blood alcohol level from their
ability to perform cognitive tasks on a smartphone (eg, text
entry analysis, swiping on screen, and balancing). Similarly,
mobile systems such as the Drunk User Interfaces (DUI) app
[11] measure how alcohol affects motor coordination [12] but
have limited ability to predict future episodes of alcohol use.

Smartphone sensors provide potentially powerful tools for
collecting continuous data that can be used to infer personal
behaviors or activities associated with alcohol use with low
burden and at low cost. The smartphone’s accelerometer has
been used to detect or measure alcohol-related intoxication

through gait analysis [13-15]. In addition, mobile crowdsensing
using smartphone sensor data (eg, GPS and Bluetooth) has been
used to “detect” or classify drinking episodes in youth on
weekend nights [16]. Similarly, our group’s work using
smartphone sensors to detect alcohol use in young adults found
that the most informative features involved time (eg, day of
week), movement (change in activities), and communication
(call duration) [17,18]. These “detection” studies focused on
alcohol use that already started. However, to prevent the onset
of a BDE, a model that predicts imminent (eg, same-day) BDE
is needed so that JIT support can be delivered before the onset
of drinking.

To date, most prediction models of imminent drinking and BDEs
are based on self-report. For example, the A-CHESS smartphone
app is a JIT adaptive intervention (JITAI), which used weekly
check-ins to track alcohol-dependent patients’ recovery progress
(ie, a risk score based on 5 items, such as urge, depression, and
sleep problems), with a Bayesian network prediction model of
lapse risk (any alcohol or illicit drug use) in the coming week
that had 75% sensitivity and 88% specificity [19]. Other studies
using ecological momentary assessments (EMAs) to predict
substance use found, for example, that negative affect, stress,
and craving or urge to drink were important predictors of
substance use in patients who completed substance use treatment
[20], adults experiencing homelessness [21], and emerging
adults who reported drinking [22]. Although these mobile apps
and EMA studies demonstrate the utility of self-report in
predicting imminent episodes of substance use, EMAs can be
burdensome to complete, especially if multiple reports per day
are required over a long duration.

Limitations of the Existing Studies on Mobile
Sensor–Based Alcohol Detection
Smartphone sensors provide a low-burden method to support a
continuous stream of data for a prediction model of imminent
substance use. However, few studies have used smartphone
sensors to “predict” substance use. Models for predicting
substance use differ from the models for detecting substance
use in requiring that data for prediction be collected before the
onset of use and that a period (eg, 1 hour) separates the
predictors (eg, phone sensor features) and predicted outcome
(eg, drinking event). Predicting drinking events before they
begin theoretically allows for a greater probability that the
intervention material would be effective. A study that developed
a prediction model of substance use craving using GPS
developed a random forest model with 93% accuracy in
predicting drug craving 90 minutes into the future, based mostly
on predicting the absence of craving (owing to the low craving
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base rate) [23]. A prediction model using a variety of
smartphone sensors (eg, time, GPS, and communication logs)
has yet to be applied to the prediction of an imminent (same-day)
drinking event. More importantly, there is a need for increased
explainability of machine learning (ML) research in the medical
domain to support JITAI development.

Although the ideal time to intervene before a drinking event to
optimally influence drinking intentions is not currently known,
the closer in time someone is to a planned event, the more
difficult it will likely be to modify those plans [24].
Alternatively, the farther away from the onset of a drinking
event certain interventions or suggestions (eg, managing the
desire or urge to drink) are, the less relevant they might be.

Needs for Explainability of Predictive Models and
Benefits of Explainable Artificial Intelligence Methods
ML models that predict a clinical outcome often do so without
providing information on the factors that contributed to outcome
prediction, commonly known as the “black box” problem.
Recent work has explored how explainable artificial intelligence
(XAI) can provide greater transparency in how artificial
intelligence generates model output. There are 2 core benefits
of XAI methods. First, XAI provides transparency into factors
contributing to the prediction of the outcome [25], which can
increase trust in the model results [26]. Second, XAI enables
hypothesis testing and algorithm adaptation through methods
such as identifying feature importance and rule extraction [27].
XAI has been applied in the medical domain for disease
prediction using visual data (eg, cancer [28] and cardiovascular
disease [29]). However, the advantages of XAI, when combined
with an ML prediction model, have not yet been applied to
smartphone sensor data and the prediction of BDEs [30,31].

Study Objectives and Novelty
With the success of our previous detection model, as a next step
in our research, we focused on (1) developing a prediction model
for imminent (1 to 6 hours) BDEs by optimizing analysis
windows and prediction distances from the onset of BDEs and
(2) enhancing the expandability of the algorithms by adapting
XAI-generated explanations (eg, Shapley additive explanations
[SHAP] and partial dependence plots [PDPs]) to explore the
interactions among key features in predicting same-day BDEs
to support the algorithmic decision-making in moving toward
developing JITAIs.

To the best of our knowledge, this work is the first attempt to
go beyond the detection of BDEs and predict imminent BDEs
using the combination of smartphone sensor data and ML
coupled with XAI for enhancing the explainability of the
algorithms. The prediction model of BDEs combines ML and
XAI toward the ultimate goal of supporting JITAIs to prevent
BDEs [2,32-34].

The novelty of our study is two-fold: (1) building an ML
prediction model of drinking events and (2) combining ML with
XAI to identify the most informative phone sensor features that
explain the prediction model’s performance. Notably, the
best-performing prediction model of drinking events can support
JITAI development by providing “windows of opportunity”

and identifying “key contributing features” to facilitate a digital
intervention’s algorithmic decision-making.

Research Questions
The ability to accurately predict imminent BDEs (occurring 1
to 6 hours into the future) would support the delivery of JIT
behavior change strategies [8]. The prediction model, combined
with XAI, would explain which smartphone sensor features are
the most informative in predicting imminent BDEs to inform
JITAI development. For example, if GPS-based travel patterns
predicted imminent BDEs, JIT messaging could support the
reinforcement of personal drinking goal commitment and
provide personalized suggestions for alternative healthy
activities before alcohol consumption begins [7]. Therefore, the
questions we attempt to answer are as follows:

1. Can we predict BDEs versus non-drinking and low-risk (1
to 3 or 1 to 4 drinks per occasion for women and men,
respectively) drinking events using ML based on passively
sensed smartphone sensor data collected before drinking
onset?

2. Which smartphone sensor features contribute the most to
predicting BDEs on weekend and weekdays?

3. How much data (ie, analysis time window; eg, 1 to 12
hours) collected before BDEs and what prediction distance
from the onset of BDEs (eg, 1 to 6 hours) can be used to
optimize the prediction of same-day BDEs on weekend and
weekdays?

4. We explored the use of XAI visualization methods to
identify factors contributing to prediction in the best
performing model. XAI results can be used to inform
algorithmic decision-making and support JITAI
development.

Methods

Study Participants
We recruited 75 individuals aged 21 to 25 years with at least 1
past-month report of a BDE from emergency departments (EDs)
in the greater Pittsburgh area. The ED sample was a subset of
participants enrolled in a 5-arm randomized trial
(ClinicalTrials.gov: NCT02918565). Methods of screening,
enrollment, and clinical trial procedures are detailed in a
previous study [35]. The 75 participants (n=53, 71% women;
n=40, 53% White; n=23, 31% Black; n=12, 16% other race;
n=8, 11% Hispanic ethnicity; n=34, 45% college enrolled) who
met study inclusion criteria had an average age of 22.4 (SD 1.9)
years.

Ethics Approval
Our study underwent a full review by the institutional review
board of each author's institution, and was granted an exemption
for the secondary analysis by both the Stevens Institute of
Technology [Stevens: 2023-018 (N)] and the University of
Washington (STUDY00016480), under the grant number
1R21AA030153-01. A unique device ID was assigned to the
participants. The sensor and SMS text message data were labeled
with the assigned unique ID. The participants were told that
they could drop out of the study at any time during the study.
Researchers informed the participants that phone sensors needed
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to be enabled during the study. However, the participants
recognized that the AWARE app and certain sensors are
configurable, which means that, for example, GPS can be
disabled manually by accessing the setting menu on their
smartphones. To keep the sensor data confidential, the study
data were deidentified, and personal identifying information
(eg, name and contact information) was stored separately from
other study data in a secure (eg, password protected and locked)
location.

The participants provided informed consent before study
participation, completed baseline questionnaires, and installed
our AWARE data collection app [36] on their smartphones.
They were paid US $20 for installing the data collection app
and completing the baseline surveys. They were also
compensated for the collection of phone sensor and phone

survey data at the end of the 14 weeks (US $10 per week for
each week of data collection, up to US $140).

Mobile Sensing Software and Phone Sensor Data
We developed our mobile data collection app based on the
AWARE framework [36] to collect data from smartphone-based
sensors. Our mobile app collected time-stamped data from a
range of phone sensors. Figure 1 describes how our
AWARE-based mobile app functioned on Android (Google
LLC) or iPhone operating system (iOS ;Apple Inc) to collect
data from mobile phone sensor streams. Our app generated a
unique identifier on each device automatically to distinguish
each participant. The app stored the sensor data on the
participant’s device. Once the phone connected to Wi-Fi, the
data were synchronized with our secure server using an
encryption key. Our app regularly checked (at 30-minute
intervals) for Wi-Fi–based internet availability.

Figure 1. AWARE-based mobile sensing framework and text messaging—sensing app on Android (Google LLC)/iOS (Apple Inc) and drinking
questions—which detail the sensor streams the app collected. BDE: binge-drinking event; iOS: iPhone operating system.

Self-reported Alcohol Consumption
The participants were asked to report alcohol consumption using
SMS text messages twice weekly, on the 2 days of the week
that they reported drinking the most in the baseline assessment
[37]. To measure prior-day alcohol consumption, we used the
following question: “How many drinks with alcohol did you
have yesterday?” We have successfully used this single-item
measure in prior studies, where the responses positively
correlated with Timeline Followback measures [38]. The
National Institute on Alcohol Abuse and Alcoholism’s definition

of a standard drink was provided to the participants: 12 fluid
ounces of regular beer, 5 fluid ounces of table wine, or 1.5 fluid
ounces of distilled spirits. The participants were asked to report
whether they drank alcohol within the past 24 hours, the
approximate start and end time of alcohol intake, and the number
of standard drinks they consumed during this time window.

To identify drinking events, we used the responses to SMS text
message queries regarding the prior day’s alcohol use [39].
Table 1 shows that most BDEs occurred from Friday (n=36)
and Saturday (n=52) to Sunday (n=20) and that the start time
of BDEs peaked at 5 PM (Table 2).
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Table 1. Distribution of binge-drinking events (BDEs) by day of the week (BDEs; n=122).

Frequency, nDays of weekNumber

2Monday1

0Tuesday2

5Wednesday3

7Thursday4

36Friday5

52Saturday6

20Sunday7

Table 2. Distribution of binge-drinking event start times (from midnight to 24 hours).

Frequency, nTime of dayNumber

300:00 to 01:001

001:00 to 02:002

002:00 to 03:003

003:00 to 04:004

104:00 to 05:005

005:00 to 06:006

106:00 to 07:007

407:00 to 08:008

108:00 to 09:009

309:00 to 10:0010

610:00 to 11:0011

311:00 to 12:0012

512:00 to 13:0013

213:00 to 14:0014

614:00 to 15:0015

915:00 to 16:0016

716:00 to 17:0017

1517:00 to 18:0018

1118:00 to 19:0019

1219:00 to 20:0020

1120:00 to 21:0021

821:00 to 22:0022

1022:00 to 23:0023

423:00 to 24:0024

Drinking Prediction Model Development
To develop a model for predicting drinking events, we followed
a standard ML pipeline approach: preprocessing data, preparing
the data set, extracting and selecting features, and training and
testing models.

Preprocessing Data
In total, 1168 events were reported by the 75 young adults: 729
non-drinking events (ie, days with no drinking event), 236

low-risk drinking events (ie, days on which 1 to 3 or 1 to 4
drinks per occasion were consumed by women or men,
respectively), and 203 BDEs (ie, high-risk drinking days on
which ≥4 or ≥5 drinks were consumed per occasion by women
or men, respectively). We included the participants in our
analysis if they reported at least 1 non-drinking at least 1
low-risk drinking or BDE and if there were at least 3 days with
the minimum amount of phone sensor data needed for analysis.
We excluded 414 events from the 75 participants (mean 5.52
events per person) because they did not provide GPS-based
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location data, and more than half of their key features were
missing. Missing key phone sensor features might have
occurred, for example, because the AWARE app allowed users
to disable GPS collection. As such, we excluded days that were
missing a few hours of sensor data (eg, owing to smartphone
running out of battery), resulting in a final data set of 754 events
from the 75 participants: BDEs (122/754, 16.2%), low-risk
drinking events (143/754, 19%), and non-drinking events
(489/756, 64.9%). For missing sensor values (ie, a few minutes,
such as 5 or 10 minutes, of gap in data collection), we
interpolated the average value between 2 adjacent sensor data
points.

Preparing the Data Set
Our strategy for drinking prediction modeling is as follows:
using behavioral features from sensor data collected over a given
analysis window of w hours (where we varied w), we predicted
whether the participant will have a BDE within d hours (with
varying d to optimize the model; Figure 2). To build this
predictive model, we first created a data set containing the sensor
data across the participants of the study (a data set split by
“rows”; 80/20 at the level of rows), calculating features in
15-minute windows (eg, the mean of the magnitude of
acceleration per minute averaged every 15 minutes). For the
15-minute window, we computed a statistical values (eg, the
mean of the raw sensor) for numerical data. We encoded the
time of day as a number from 0 to 23 to represent all segments
of the day.

Figure 2. Our approach to building machine learning prediction models: “D” refers to a prediction distance from drinking onset. This prediction window
varied from 1 to 6 hours. “W” refers to an analysis window, which represents the length of the time window (t) in which sensor data are being used.
The analysis window varied from 1 to 12 hours.

We used 15-minute segment instances as our unit of analysis
because this time frame captures known social and behavioral
predictors of binge drinking. The day of the week was encoded
as 0 to 6. If an individual reported that they did not drink the
previous day, we labeled each of the day’s 15-minute windows
as a non-drinking event. When the participant reported a
drinking event (BDE or low-risk drinking event), we labeled
the windows before and after the drinking event as non-drinking
event. For a woman, windows during a drinking event were
labeled as BDE if they consumed ≥4 standard drinks, and for a
man, windows during a drinking event were labeled as BDE if
they consumed ≥5 standard drinks. Otherwise, the windows
were coded as low-risk drinking. More than 60% (75/122; the
total number of reports=122 and the number of BDE reports=75)
of the BDEs reported started between 4 PM and 10 PM, as
shown in Table 1, and on a Friday or Saturday, as shown in
Table 2. As suggested in earlier work [40], we assumed that
behavioral data aggregated during the day by smartphone-based
sensors, in our case, can be applied to predict same-day drinking
events.

We explored different prediction windows using 1-, 3-, and
6-hour distances prior to drinking onset to see how far in
advance predictions could be made about BDEs (Figure 2).
Similar to research on physical activity [41], we hypothesized
that shorter window distances (eg, 1 hour) would reflect more
recent behavior and would be more strongly related to same-day
alcohol consumption, whereas other types of sensor data might
require cumulative behavior over a longer period (eg, 6 hours
of sedentary activity) to be associated with increased likelihood
of alcohol use later that day. Interventions could be delivered
at any of these window distances and could be tailored to be
context specific at the time of delivery using a JIT framework
[32]. In addition, from a technical standpoint, window size, or
how much data are needed to accurately predict drinking events,

impacts how much data are required to be kept on the
smartphone, impacting privacy and phone storage
considerations. We used window sizes of 1, 3, 6, 9, and 12 hours
in our analysis. For example, if we wanted to predict whether
a BDE would occur at 6 PM, we tested the predictive ability 1
versus 3 hours in advance (ie, at 5 PM vs 3 PM). Similarly, if
we wanted to predict whether a BDE would occur at 3 PM, we
tested the predictive ability using sensor data collected between
2 PM and 3 PM versus between 12 PM and 3 PM (ie, sensor
data from 1 vs 3 hours).

We split our data into 2 nonoverlapping data sets to represent
the randomly selected data set: training (80%) and testing (20%)
data sets, which were split by rows. The training set was used
to train ML algorithms and for model optimization. The trained
model was then tested on the “unseen” data set. We used 10-fold
cross-validation to identify the best model with our training
data set. We report our final results on the 20% holdout test
data set. To balance our data set (consisting of mostly
non-drinking events), we oversampled the instances of the
underrepresented classes using the synthetic minority
over-sampling technique (SMOTE) [42] in our training data
set, balancing BDEs and low-risk drinking events. Although
SMOTE may affect the importance scores of the features we
used because we filtered the features before the data were
processed with SMOTE. The test data set was kept unseen and
SMOTE did not affect our overall analysis.

Extracting Features

Overview

Building on our previous work in detecting BDEs with
smartphone data [17,18], we extracted 70 features from
smartphone sensors (Multimedia Appendix 1 [17,43]): time,
location, communication (ie, calls), motion, device use, and
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environment. Our feature sets were calculated from the raw data
based on the smartphone-based sensors and from common
descriptive statistics (eg, mean and median). As there is no prior
work that has identified phone sensor features associated with
drinking event planning (ie, the inference of behaviors that occur
before and proximal to drinking onset), we were largely
exploratory in selecting features. Wherever possible, we used
information from related alcohol literature to support our
selection. We extracted 2 time features: day of week and time
of day, as our data (Table 1) and prior studies [18,44] showed
that young participants are likely to be involved in a BDE during
evenings. This work also showed that more drinking events
occurred between Thursday and Sunday, peaking on Saturday
(Table 2).

Activity Level, Movement, Travel, and Location Features

The statistical features of physical activity and the magnitude
(power) of body movement were extracted from the
accelerometer. For location features, we chose features that
have been shown to be associated with drinking behaviors [18]:
total time spent at home, total number of places an individual
visited, travel distance, the duration of a stay at a specific place,
location entropy [45], the radius of gyration, circadian
movement, location variance, the number of important places
visited, and time spent at each important place. Feature
extraction for circadian movement [46] was done using the
Lomb-Scargle periodogram [47], which computes to what
degree an individual pattern of location data follows a 24-hour
circadian cycle. Location variance is the sum of the variances
of latitudes and longitudes. For the number of important places
visited and time spent at each important place, we used the
method described by Press and Rybicki [47], which involved
the clustering of the location coordinates to find important places
(ie, places visited frequently). The number of locations passed
in a given time (ie, travel speed) was computed from GPS data
[43].

Communication Features

We calculated the following from call logs and contacts: the
total number and duration of incoming and outgoing calls,
number of SMS text messages, and total number of contacts.
We hypothesized that, for example, calls and SMS text messages
(logged automatically by our app) could be used to predict
BDEs. We chose these features, as young adults are likely to
communicate with their friends before drinking events (eg,
planning to drink during the evening’s activities).

Device Use Features

We used screen lock and unlock events and interaction times
to understand how young adults use smartphones during a day.
These phone features are a potentially powerful tool to infer
whether certain types of mobile phone use associated with social
communication relate to near-future alcohol use (eg, phone use
to arrange a meetup for a drink and finding a place using GPS
and map). For device use, we used app use, screen status, and
battery charging and extracted the following details from the
mobile app use data: the number of unique apps used, the
duration of app use, the number of times the individual switched
between apps, and the number of apps running in the foreground.
We extracted the following from screen status data: the number

of times the screen was turned on or off and the total duration
of screen use. We extracted the following details from the data
on battery charging: time when the battery was fully charged,
the total duration of charging battery, and battery percentages.

Environmental Features

Finally, we extracted the number of unique Wi-Fi hotspots as
an environmental feature.

Building Models and Model Comparison
We built our prediction models by parsing the data for each
person into 15-minute epochs. Each 15-minute epoch contained
70 sensor features and a drinking label (N: non-drinking event,
D: low-risk drinking event, or BDE). We then identified all
sensor features from all the 15-minute epochs in the 24 hours
before the onset of a drinking event as our primary period for
predictive modeling. For example, if a person reported starting
drinking at 9 PM on a day they self-reported a BDE, then we
would include all sensor data from the 8:45 PM–to–9 PM epoch
on the previous day to the 8:45 PM–to–9 PM epoch on the
current day. For days when there was no reported drinking, we
randomly selected a time between 6 PM and midnight and
marked this observation as the “start of the non-drinking event.”
There were missing observations in the data set, so not all
labeled days had ninety-six 15-minute epochs of sensor data.

As part of our modeling, we assessed the performance of the
predictive models using a range of analysis window sizes (1-,
3-, 6-, 9-, and 12-hour windows) to compare the accuracies of
the ML models. To test different analysis window sizes, the
“prediction distance” window was held constant at “1 hour”
prior to a drinking event. Note that the results indicated that a
prediction window of 6 hours on weekdays and 3 hours on
weekends prior to a drinking event had the best performance
across analysis window sizes; therefore, the prediction windows
of 6 hours on weekdays and 3 hours on weekends are reported
here (refer to Multimedia Appendix 1 for results of testing
analysis window sizes at other prediction distances).

We also estimated a baseline model that used only the day of
the week to classify non-drinking events, low-risk drinking
events, and BDEs, with the idea that a prediction model is
needed to demonstrate better performance relative to baseline.

We performed hyperparameter tuning for the prediction models
(separate models for weekday and weekend) for a 3-way
classification task: non-drinking event (N) versus low-risk
drinking event (D) versus BDE using Optuna [48]. We also
trained a prediction model to predict BDE (vs N and D) for
weekdays and weekends as a particularly risky form of drinking.
We used popular ML classifiers and trained 5 algorithms,
extreme gradient boosting (XGBoost), random forest, decision
tree, support vector machine, and logistic regression, using all
selected sensor features.

Hyperparameter tuning uses a search strategy to identify an
optimal set of parameters that maximizes the performance of a
model. To evaluate and hyperparameter tune our models, we
implemented 10-fold cross-validation and then min-max scaling
for feature normalization and used oversampling on the training
set with SMOTE to handle class imbalance. We ran 100
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iterations of Optuna to find the best hyperparameter by
optimizing the F1-score of the model. As part of hyperparameter
optimization, we tried different values of XGBoost. Table 3
presents the setting of the XGBoost parameters.

We chose the hyperparameter combination that achieved the
best performance on the validation set for the final model that
was then evaluated on the test set. To try multiple combinations
of parameters, cross-validate each, and determine which values

result in the best performance, we tested a variety of parameters,
such as the model type, distance from the drinking events (ie,
prediction window), the amount of data used (ie, analysis
window size), and hyperparameters. The analysis window size
was particularly important, as it defined how much data were
used to fit the model. For example, an analysis window size of
3 and a prediction distance (ie, prediction window) of 6 means
that the hours [17,18,49] before the event are used to predict
the class of the event (N, D, and BDE).

Table 3. Extreme gradient boosting (XGBoost) classifier parameter settings.

ParametersFunction nameNumber

gbtree, gblinear, and dartbooster1

3 to 9max_depth2

2 to 10min_child_weight3

1 × 10–8 to 1.0eta4

1 × 10−8 to 1.0gamma5

depthwise and lossguidegrow_polic6

uniform and weightedsample_type7

tree and forestnormalize_type8

1× 10−8 to 1.0rate_drop9

1× 10−8 to 1.0skip_drop10

Evaluating Model Performance
To evaluate the performance of the models, we computed the
following metrics to measure the overall performance: accuracy,
F1-score, κ, precision, and recall. To measure the performance
of the models across different classes, we computed precision,
recall, and F1-score. In addition, we built a baseline model using
only the day of the week to test how much the phone sensor
features improved model performance.

First, we considered the F1-score to optimize the prediction
model. The F1-score is a balanced measure of precision and
recall. Second, we used the κ value if the F1-scores were the
same. The κ value is a measure of the similarity between
observations and predictions while correcting for agreement
that happens by chance [50]. The κ value is also used to test
performance for imbalanced classes and multiple classes.

Feature Evaluation and Interpretation of XAI Analysis
We used the most represented XAI, SHAP [51], and PDPs [52]
for the interpretation of the 2 best performing models using the
XGBoost classifier for weekdays and weekends, respectively.

First, we selected SHAP [51] because it is the most common
XAI method that helps users interpret ML models and visualize
the relationships between variables (eg, sensor features in our
study) and predicted outcomes (ie, BDEs, non-drinking events,
and low-risk drinking events). It is based on the Shapley values
from cooperative game theory [53,54] and applied in ML
problems [51]. SHAP assigns contributions to features for their
impact on the prediction class. In brief, (1) a greater SHAP
value means greater contribution to the model prediction of a

specified class, (2) a positive SHAP value means that the feature
contributed “positively” to the model’s specified prediction
class (increased the probability), and (3) a negative SHAP value
means that the feature contributed negatively (decreased the
probability) to the prediction. In the Results section, we present
the SHAP feature importance bar plot to show the top features
for BDE classification, SHAP summary plot to show how
features impact BDE prediction based on the values that they
take, and the SHAP dependence plots to show some of the
features’ interaction with time of day and their impact on the
BDE prediction on a more detailed level.

Second, we selected PDPs [52], which depict the marginal
impact of 1 or 2 features on the target prediction. PDPs can
show the relationship between the selected set (eg, a test data
set) of features and their impact on drinking predictions [55].
In this study, we used PDPs to show the impact of key features
(eg, radius of gyration) on the prediction of each model class
and the impacts of the interaction of latitude and longitude
features (ie, locations where young adults spent time) on the
prediction of BDEs on weekends and weekdays using a contour
plot for a circumscribed area of Pittsburgh, Pennsylvania, where
the data were collected.

Results

Model Performance: Analysis Window Size
Overall, we found that the XGBoost models generally
outperformed the logistic regression, support vector machine,
random forest, and decision tree models for a range of analysis
window sizes. In Table 4, we report the models with a 1-hour
prediction distance and different amounts of phone sensor data
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(1-, 3-, 6-9-, and 12-hour windows) for weekdays. By comparing
the phone sensor data with different time lengths for the same
prediction distance, we found that 9 hours of phone sensor data
achieved the best model. The best population model resulted in
an average accuracy of 93.9% (compared with 60.6% for the
baseline model that used only the day of the week feature) in
predicting 3 different events during weekdays: non-drinking,
low-risk drinking, and BDEs (average accuracy, F1-score, and
κ: 93.9%, 0.94, and 0.84, respectively).

For the weekend prediction model (Table 5), we found that 12
hours of phone sensor data yielded the best model by comparing
phone sensor data using different analysis window sizes (1-, 3-,
6-, 9-, and 12-hour windows) for the same predicted distance
(ie, 1 hour in advance of BDE). The best population model
resulted in 90.2% average accuracy (compared with 60.6% for
the baseline model that used only the day of the week feature)
in predicting 3 different events: non-drinking events, low-risk

drinking events, and BDEs (average accuracy, F1-score, κ:
90.2%, 0.90, and 0.83, respectively).

The F1-scores for window sizes 1 to 12 hours for the weekdays
(analysis distance size is held at 1 hour) are shown in Figure 3
(left). The F1-score increases according to the increase in
window size until it reaches the peak when the window size is
9. When the vertex is reached, the F1-score decreases with
increase in window size. WDXGBoost-W9D1 refers to the
weekday XGBoost model in which the analysis window size is
9 hours and prediction distance is 1 hour from drinking onset.

The F1-scores for window sizes 1 to 12 hours for the weekends
(analysis distance size is held constant at 1 hour) are shown in
Figure 3 (right). The F1-score increases according to the increase
in window size. WEXGBoost-W12D1 refers to the weekend
XGBoost model in which the analysis window size is 12 hours
and prediction distance is 1 hour from drinking onset.

Table 4. Performance of the models with different “analysis window” (the amount of sensor data analyzed) in predicting events, low-risk drinking
events, and binge-drinking events (BDEs) 1 hour in advance during weekdays.

Model

WDXGBoost-W12D1WDXGBoost-W9D1WDXGBoost-W6D1WDXGBoost-W3D1WDXGBoost-W1D1a

89.093.986.986.877.8Accuracy (%)

0.890.940.870.870.78F1-score

0.750.840.680.680.27κ

0.910.920.910.950.33BDE precision

0.730.840.680.690.33BDE recall

0.810.880.780.800.33BDE F1-score

aWDXGBoost-W1D1: weekday (WD) extreme gradient boosting (XGBoost) model, where analysis window size (W)=1 hour and prediction distance
(D)=1 hour from drinking onset.

Table 5. Performance of the models with different “analysis window” (the amount of sensor data analyzed) in predicting non-drinking events, low-risk
drinking events, and binge-drinking events (BDEs) 1 hour in advance during weekends.

Model

WEXGBoost-W12D1WEXGBoost-W9D1WEXGBoost-W6D1WEXGBoost-W3D1WEXGBoost-W1D1a

90.288.285.179.961Accuracy (%)

0.900.880.850.800.61F1-score

0.830.780.740.610.31κ

0.910.920.930.930.88BDE precision

0.850.800.710.770.39BDE recall

0.880.860.810.840.54BDE F1-score

aWEXGBoost-W1D1: weekend (WE) extreme gradient boosting (XGBoost) model, where analysis window size (W)=1 hour and prediction distance
(D)=1 hour from drinking onset.
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Figure 3. Performance comparison (F1-score) of models with different window sizes for weekdays (left) and for weekends (right).

Model Performance: Prediction Distances From the
Onset of Drinking Events
Next, we present the performance of different prediction
distances, holding the analysis window size constant
(weekday=9 hours and weekend=12 hours). In this section, we
present the performance of the models with a range of prediction
distances: 1, 3, and 6 hours from drinking events.

For the weekday prediction model, we found that the XGBoost
model with a 9-hour analysis window and 6-hour prediction
distance (ie, WDXGBoost-W9D6) had the highest F1-score for
predicting BDEs (precision, recall, and F1-score: 0.92, 0.84,
and 0.88, respectively; Table 6).

Figure 4 (left) shows, the model accuracy scores for prediction
distances 1 to 6 hours for the weekdays (analysis window size
is held constant at 9 hours). The F1-score increases according
to the increase in distance until it reaches the peak when the

distance is 6 hours from drinking onset. WDXGBoost-W12D1
refers to the weekday XGBoost model in which the analysis
window size is 9 hours and prediction distance is 6 hours from
drinking onset.

For the weekend prediction model, the XGBoost model with a
12-hour analysis window and 3-hour prediction distance (ie,
WEXGBoost-W12D3) had the highest F1-score for predicting
BDEs (precision, recall, and F1-score: 0.97, 0.95, and 0.96,
respectively; Table 7).

Figure 4 (right) shows the model accuracy scores for prediction
distances 1 to 6 hours for the weekends (analysis window size
is held constant at 12 hours). The F1-score increases according
to the increase in distance until it reaches the peak when the
distance is 3 hours from drinking onset. “WEXGBoost-W12D3”
refers to the weekend XGBoost model in which the analysis
window size is 12 hours and prediction distance is 3 hours from
drinking onset.

Table 6. Performance of models with different “prediction distances” (1-6 hours before) in predicting binge-drinking events (BDEs), non-drinking

events, and low-risk drinking events during weekdaysa.

Model

WDXGBoost-W9D6bWDXGBoost-W9D3WDXGBoost-W9D1b

94.389.893.9Accuracy (%)

0.940.900.94F1-score

0.880.760.84κ

0.920.920.92BDE precision

0.840.700.84BDE recall

0.880.790.88BDE F1-score

aAnalysis window size was held constant at 9 hours, which provided the best performance.
bWDXGBoost-W9D1: weekday (WD) extreme gradient boosting (XGBoost) model, where analysis window size (W)=9 hours and prediction distance
(D)=1 hour from drinking onset.

Figure 4. Performance comparison (accuracy) of models with different prediction distances for weekdays (left) and for weekends (right).

JMIR Form Res 2023 | vol. 7 | e39862 | p. 10https://formative.jmir.org/2023/1/e39862
(page number not for citation purposes)

Bae et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 7. Performance of models with different “prediction distances” (1-6 hours before drinking onset) in predicting binge-drinking event (BDEs),

non-drinking events, and low-risk drinking events during weekendsa.

Model

WEXGBoost-W12D6WEXGBoost-W12D3WEXGBoost-W12D1b

94.19590.2Accuracy (%)

0.940.950.90F1-score

0.890.920.83κ

0.920.970.91BDE precision

0.960.950.85BDE recall

0.940.960.88BDE F1-score

aAnalysis window size was held constant at 12 hours, which provided the best performance.
bWEXGBoost-W12D1: weekend (WE) extreme gradient boosting (XGBoost) model, where analysis window size (W)=12 hours and prediction distance
(D)=1 hour from drinking onset.

Predicting BDEs
In summary, the combination of the 9-hour and 12-hour analysis
window sizes with a 6-hour and 3-hour prediction distances
resulted in population models with the highest F1-score and
accuracy for the prediction of drinking events overall on
weekdays and weekends, respectively.

In addition, we were the most interested in a model that
performed the best in predicting BDEs, which are associated
with the greatest negative consequences. Therefore, we chose
a model and hyperparameters that had the highest F1-score
(balance of precision and recall) for BDEs (vs low-risk drinking
and non-drinking periods) on the validation set. This same
model, which had the highest F1-score, also had the highest
accuracy. Specifically, the weekday model had an F1-score (for
BDE) of 0.94 on the test data set and a high average precision
(N, D, and BDE: 0.90, 0.96, and 0.92, respectively), recall (N,
D, and BDE: 0.85, 0.99, and 0.84, respectively), and F1-score
(N, D, and BDE: 0.87, 0.84, and 0.88, respectively). By contrast,
the weekend model had an F1-score (for BDE) of 0.95 on the
test data set and a high average precision (N, D, and BDE: 0.96,
0.91, and 0.97, respectively), recall (N, D, and BDE: 0.97, 0.90,
and 0.95, respectively), and F1-score (N, D, and BDE: 0.96,
0.90, and 0.96, respectively; Tables 4-7).

Understanding Key Contributing Features Using XAI

Overview
To support JITAI development, understanding key contributors
to the prediction of BDEs is needed to refine and adapt
algorithm-based decisions. The SHAP feature importance plot
in Figure 5 shows the 20 (default, but configurable) most
important features according to their level of contributions

(mean absolute SHAP values across all the instances) to the
ML prediction model, only targeting BDE prediction. The results
show that “time of day” contributed the most to predicting BDEs
on both weekends and weekdays.

In Figure 5, we present the SHAP summary plots for our best
models for both weekdays and weekends, which show the
contribution of sensor features to the prediction of BDEs (left)
and feature importance (right) on weekdays (top) and on
weekends (bottom) using the test data set. SHAP summary plots
show each sample in the test set as a data point and their impact
in predicting BDEs based on the relative values of features. The
color spectrum depicts the values of features. If the value of a
feature is relatively high for a specific instance, it is represented
in red. If the value is relatively low, it is represented in blue.
The plots on the right-side show feature contribution in absolute
SHAP values for the most influential 20 features.

Overall, the longitudinal and latitudinal coordinate statistics,
radius of gyration, and movement features were among the most
highly influential features for BDE prediction. SHAP results
show that (1) latitude and longitude were the most important
features, in addition to time of day contributing to the prediction
of BDEs both on weekdays and weekends, and (2) radius of
gyration is a relatively more impactful predictor of BDEs on
weekends than on weekdays.

From the summary plots on the left, we can see that acceleration
features tend to be negatively related to the BDE prediction on
both the weekends and weekdays, meaning that higher
acceleration values decrease the probability of BDE prediction.
This greater activity or movement of the smartphone is
associated with a lower likelihood of BDEs. In addition, radius
of gyration and number of locations are positively related to the
BDE prediction (ie, greater radius of gyration and number of
locations increase the probability of BDE prediction).

JMIR Form Res 2023 | vol. 7 | e39862 | p. 11https://formative.jmir.org/2023/1/e39862
(page number not for citation purposes)

Bae et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Shapley additive explanations (SHAP) summary plots show features' contribution to the models for weekdays (top) and for weekends (bottom).
acc: accelerometer; avg: average; max: maximum; med: median; num: number; sec: second; std: standard deviation; WTSD: Weighted stationary latitude
and longitude standard deviation.

SHAP: Interaction Between Time of Day and Radius of
Gyration
We present the interaction effect between key features: time of
day with GPS-derived travel pattern or location. As shown in
Figure 6, the results demonstrate the interaction between the
radius of gyration and time of day features and their impact on
BDE prediction. The hours of the day are represented with
colors, and the SHAP value represents the impact on the BDE
prediction—positive SHAP value indicates a positive
contribution to BDE prediction.

The radius of gyration followed similar patterns on both
weekends and weekdays for values greater than approximately
1000 m; however, radius of gyration and day of week (weekday
or weekend) had opposite patterns for values between 0 and

800 m contributing to BDEs on weekdays. When radius of
gyration is between 0 and 800 m, SHAP values for weekdays
follow an inverted u–curve peaking at around 500 m, whereas
for weekends, the same radius of gyration range follows a
u-curve (Figure 6 left [weekdays] vs right [weekends]).

In addition, we narrowed down the coordinates to solely
represent the Pittsburgh area (ie, the place where data were
collected) to localize the meaning of the values. Looking at the
average latitude plots, we see that the patterns are inverse of
each other for weekdays and weekends for the same latitudinal
coordinates, which means that young adults visit certain areas
before BDEs on the weekends but not on weekdays. This is
highly likely owing to bars and other drinking spaces being in
the vicinity of workplaces in the city.
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Figure 6. Shapley additive explanations (SHAP) dependence plots present an interaction between the time of day and the radius of gyration for weekdays
(left) and for weekends (right).

PDP: Contribution of the Features to the Prediction of
BDEs Versus non-drinking and Low-Risk Drinking
Events
PDPs show the marginal effect that 1 or 2 features have on the
ML model [52]. In Figure 7, we visualize the impact of radius
of gyration (which refers to the radius of the circle that includes
all locations visited during a time window) on each prediction
class.0 on the y-axis represents the expected (mean) probability
value of each respective class. Positive y-axis values indicate
positive contribution to the prediction of the class, whereas the
negative y-axis values indicate negative contribution to the
prediction of that class. x-axis values are radius of gyration

values in meters, divided into 9 equal portions (ie, the number
of samples between grids are equal).

From the plots, we can see that young adults are more likely to
travel within a larger area (radius of gyration) before BDEs
compared with non-drinking or low-risk drinking events on
weekdays. By contrast, it is shown that a greater radius of
gyration on weekends is negatively related to non-drinking
positively related to low-risk drinking events and BDEs.
However, specifically the range between 1223 and 10,952 m
was positively related to BDEs. Furthermore, on weekends, the
probability of not drinking alcohol declines as the radius of
gyration increases, whereas on weekdays, it follows a more
linear pattern with a slight increase in probability at higher
radius of gyration.

Figure 7. Two-way partial dependence plots (PDPs) on the effects of latitude and longitude on binge-drinking event (BDE) probability. 9W6D: the
model by taking 9-hour window and 6-hour analysis distance from the onset of BDE; 12W3D: the model by taking 12-hour window and 3-hour analysis
distance from the onset of BDE.
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Two-Way PDPs for Location Coordinates
In Figure 8, we present the PDP of BDE on weekdays (left) and
weekends (right) and the interaction of 15-minute average
longitudes and latitudes on a contour plot representing a section
in the Pittsburgh metropolitan area (city of Pittsburgh and
surrounding smaller towns). 9W6D refers to the model by taking
9-hour window and 6-hour analysis distance from the onset of
BDE and 12W3D refers to the model by taking 12-hour window
and 3-hour analysis distance from the onset of BDE.

This plot can be used as a map to display which visited areas
increase the probability of BDEs on weekends versus weekdays.
The horizontal axes represent the average latitude values, and
the vertical axes represent the average longitude values. To
preserve privacy and simplify the plot, rather than mapping out
the exact locations of participants and the probability of BDEs
at specific locations, we plotted their general locations (zip code
level or neighborhood level) to give a bird’s eye view on their
locations and calculate the probabilities in general areas rather
than specific locations. The color spectrum represents the
probability of the person starting a BDE within 6 to 15 hours
later that day. From dark to bright colors, the probability of
BDEs increases.

From the weekend plot, we found that in certain geographic
locations (represented in yellow in the plot), the probability of

BDEs was 24%, higher than the expected probability of 21.4%
(relative increase of 11% and absolute increase of 2.6%).

As for the weekday plot, in the areas colored in yellow, the
average probability of binge drinking behavior was 17%, higher
than the expected probability of BDE of 11.9% in the entire
data set, which indicates a 1.43× increase in BDE prevalence
(weekday plot analyzes a greater area because of the differences
in how the data are dispersed). Thus, it can be concluded that
just by looking at the 15-minute average locations of young
adults who reported hazardous alcohol use and were sampled
from an ED in the Pittsburgh metropolitan area, we can make
meaningful inferences about their probability of binge drinking
later that day. With more fine-grained and personalized GPS
data, it may be possible to increase the predictive power of
location information.

In summary, we found that a combination of time of day and
GPS-derived travel and location features provided interpretable
patterns of young adults who are likely to report same-day
BDEs. Our findings not only optimized the ML model with
“windows of opportunity” but also identified “key location
features” to trigger JITAIs to support the design of intervention
strategies and messages for BDE prevention among young
adults.

Figure 8. Shapley additive explanations (SHAP) summary plots show features' contribution to the models. (A) PDP interaction of location coordinates
for weekdays. (B) PDP interaction of location coordinates for weekends. PDP: Partial Dependence Plots.

Discussion

Principal Findings

Overview
We attempted to predict imminent same-day BDEs in young
adults with the use of smartphone-based sensors. We used ML
coupled with XAI to investigate windows of opportunity to
prevent BDEs. Our results confirm that smartphone sensors can
be used to predict imminent BDE events before their onset using
same-day behaviors and comparing them with the behaviors
during non-drinking and low-risk drinking events on weekdays
and weekends. The key contributing features we found are time
of day, travel patterns and boundaries (eg, radius of gyration),
and accelerations of body movements, which could be used for

triggering JITAI before the onset of BDEs and thus preventing
the potential risks of BDEs.

As our previous work confirmed that the detection of BDEs is
feasible using phone sensor data [17,18], moving toward the
prevention of BDEs, we focused on predicting imminent
(same-day) BDEs before their onset. In this feasibility study,
we demonstrated how to build an ML model using passively
sensed smartphone sensor data, which predicted young adult
drinking behaviors (whether they will engage in BDEs, low-risk
drinking events, or non-drinking events), with 94.3% accuracy
for weekday drinking behavior (WDXGBoost-W9D6) and 95%
accuracy for weekend drinking behavior
(WEXGBoost-W12D3). The prediction model using phone
sensor data for both weekday and weekend drinking had higher
accuracy relative to a baseline model using only day of the week
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to predict drinking behavior (60.6% accuracy). We also found
that 9 hours (for weekdays) and 12 hours (for weekends) of
phone sensor data collected at a 6-hour and 3-hour prediction
distance (weekday and weekend, respectively) maximized the
F1-score (which balances precision and recall) for predicting
BDEs. The analysis window size is important for estimating
data storage needs and potential privacy risks of storing sensitive
data on the phone for prediction. This ML prediction model
advances our prior work using phone sensors to “detect”
episodes of alcohol use that have already started [17,18] by
allowing the delivery of JIT support messages 3 and 6 hours
before a predicted drinking event, when alternative plans to
support drinking limit goals can be considered and implemented.

Important Smartphone Sensor Features for Predicting
BDEs
There were similarities in the most important phone sensor
features for the “detection” and “prediction” of drinking events.
For example, time (eg, time of day and day of the week) was
important for both the “detection” [17,18] and prediction of
drinking events. However, there were important differences in
key features used to “detect” relative to “predict” a drinking
event. As an example, microlevel features, such as screen
interaction duration and number of activity changes, were key
features relevant to the “detection” of a drinking event, whereas
the macrolevel features of travel and location (eg, radius of
gyration and latitude and longitude) were key features relevant
to the “prediction” of an imminent drinking event. XAI further
revealed that the interaction of time (eg, time of day and day of
the week) with travel and location features contributed to the
prediction of drinking events in young adults.

In predicting drinking events, we found that young adults who
traveled more (eg, larger radius of gyration) and spent longer
duration in important locations were more likely to report BDEs
(ie, compared with non-drinking events) and drinking events
(ie, non-drinking and drinking events) later that day.
Furthermore, the participants who interacted with their
smartphones more (ie, higher acceleration values) and had longer
call durations were less likely to drink alcohol later in the day.
These results suggest that smartphone interaction activity and
communication during the day might indicate work, school, and
social obligations and activities that could help to regulate or
constrain drinking behavior. By contrast, young adults who had
fewer communication interactions using the phone had an
increased likelihood of drinking later that day. The low level
of communication activity involving the phone in the hours
before a drinking event may reflect a sense of social isolation,
which is a direction to be examined in future research. The most
important smartphone sensor features contributing to drinking
behavior prediction may serve as early warning signals, which
have parallels in the mental health literature, where, for example,
certain signs and symptoms signal increases in depressive
symptom severity [56].

Further analyses using XAI indicated differences in the
importance of features in predicting BDEs in young adults on
weekdays relative to weekends. For example, the radius of
gyration was a more important predictor of BDEs on weekends
than on weekdays. The relevance of GPS-derived travel data in

relation to episodes of alcohol use is consistent with prior
smartphone sensor work with young adults [16]. Our use of
XAI adds to this emerging literature by showing, for the first
time, that the interaction of day of the week, time of day, and
location information contributed to the prediction of BDEs in
young adults. The enhanced explainability of the ML prediction
model provides novel insight into factors that serve as early
warning signs of an imminent and potentially preventable BDE
in young adults.

JIT Delivery to Prevent BDEs
The ability to predict upcoming drinking events 3 and 6 hours
before their likely onset during weekends and weekdays,
respectively, using only smartphone sensor data could support
JIT intervention [7], potentially boosting digital intervention
effects [57]. This time window prior to drinking onset permits
the opportunity for a more proximally timed, proactive
intervention in young adult drinkers to modify their drinking
intentions, enhance their motivation to set drinking limit goals,
and provide them with tips to successfully meet their health
goals when such support may be most salient. In several studies,
including Suffoletto et al [35], we found that proactively
prompting goal commitment to limit drinking before drinking
onset is a critical component of JIT interventions. As such, a
prediction-based intervention approach avoids delivering
messages or support during a drinking event when cognitive
and motivational impairment due to acute alcohol use might
limit message utility.

The drinking prediction models presented in this paper, testing
a range of distances from the onset of drinking (eg, 1-, 3-, and
6-hour prediction distances), suggest temporal changes that are
the most predictive of drinking on specific days (weekends vs
weekdays), which are relevant to tailoring intervention content
[7]—for example, farther from the onset of drinking, enhancing
the motivation to limit drinking, or planning alternative healthy
activities might be prioritized. In contrast, once drinking starts
(ie, relevant to a drinking detection model), specific techniques
to reduce the risk associated with a BDE could be provided (eg,
alternate alcoholic and nonalcoholic drinks) [4]. We envision
the future use of our predictive models to prevent the onset of
BDEs and suggest some considerations to developers that need
to be considered for designing JIT intervention systems. In this
system, young adults willingly download an app on their
smartphone, consent to the analysis of phone sensor data, and
receive intervention messages to avoid BDEs and related
negative consequences. To make the app relevant and useful to
a young adult, JIT resources could be sent to promote rewarding,
personalized nonalcohol events that shift attention and intention
away from drinking to healthy alternative activities.

Privacy and Data Storage
Our results suggest that an eventual BDE prediction and
intervention app requires a certain amount of sensor data to be
temporarily stored on one’s smartphone. The phone needs to
store a window of 12 hours (WEXGBoost-W12D3) and 9 hours
(WDXGBoost-W9D6) of data to run the prediction algorithm
for BDEs on weekends and weekdays, respectively. Older data
can be removed on an ongoing basis to maximize data privacy.
Furthermore, although our current system runs on a server, the
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prediction model is efficient enough that it could be executed
directly on a smartphone, with data never leaving the
smartphone. Regarding privacy and ethical issues in the
collection of phone sensor data, there is a need to carefully
review the data collection process with the participants,
including the collection of specific types of sensor data (eg,
location data) and the granularity at which data will be collected
(ie, the precision of location data to minimize identifiability),
and provide them with examples of the variables that will be
derived (eg, the radius of daily travel from location data) so that
they can evaluate the potential risks to privacy and provide
informed consent for data collection. The voluntariness of data
collection and ability to opt out of data collection at any time
need to be made clear and discussed with the participants when
obtaining their informed consent. The project’s app used
reminders (eg, flashing red banner or notification saying that
the app was running) to keep the participants informed of phone
sensor data collection. Secure methods of data transmission and
storage (eg, on the phone and server) were used but are subject
to potential breach, a risk which the participants need to
understand.

Privacy, Trust, and XAI
It is challenging to balance privacy preservation and the
accuracy of knowing an individual’s location and travel patterns.
The collection and analysis of GPS data raise privacy issues
because the participant’s location (eg, home address) might be
identifiable. The deidentification and level of granularity of
data must be considered in protecting the privacy and
confidentiality of the participants. Interestingly, based on our
supplementary analysis (details in Multimedia Appendix 1)
using the rounded GPS latitude and longitude coordinates, we
found a trade-off relationship between privacy and accuracy.
The supplementary experiment showed that accuracy was 5
percentage points lower compared with our best performing
model (94%) when the latitude and longitude coordinates were
rounded (to 1 decimal place; ie, 0.1 refers to approximately 11.1
km). In this scenario (GPS data rounded to 1 decimal place),
GPS data do not represent the specific address that the
participants visit during the day but instead represent a relatively
large region, ranging from 10 to 50 km. As such, it is important
to consider the granularity of GPS data to make meaningful
BDE predictions that balance privacy-preserving strategies and
the performance of the prediction algorithms. Alternatively,
after a full explanation of the risks and data to be collected, the
participants may agree to the collection and analysis of granular
location data for research and health care purposes. These
location data, along with analysis of key behavioral features
captured by smartphone-based sensors impacting BDEs, permit
the use of XAI techniques, including feature importance and
contribution (via SHAP and PDPs) to determine potential
features contributing to the prediction of imminent BDEs. In
addition, XAI models that explore counterfactuals (eg,
non-BDEs) and contrastive examples (eg, low-risk drinking)
[58,59] may be used to understand hypothetical alternative
scenarios and generate possible feature combinations to obtain
an expected outcome (eg, non-drinking). However, risks such
as overtrust and reliance [60] on clinician decision support
systems need to be carefully investigated.

Real-world Application and Related Issues
More frequent reminder systems or a more effective incentive
mechanism could improve compliance with sustainable data
collection using phone sensors and phone surveys over a long
period. The development of a “dashboard” could help a
researcher to monitor participant compliance. Alternatively,
newer transdermal alcohol biosensors might facilitate the
collection of data on alcohol consumption with less stigma and
participant burden for use in providing “ground truth” to train
the ML model.

Regarding battery drain, future research on the use of
smartphone sensors for predicting drinking events might identify
an optimal set of sensors to use. This optimal set could use a
lower overall sampling rate or optimize the sampling rate for
the sensors based on the algorithm chosen to minimize battery
drain. Although we used the default sampling rates specified in
the AWARE data collection framework, in the future, we can
explore different sampling rates to optimize both the
performance of the predictive models and the battery life of the
smartphones. Future studies should identify which phone sensor
features are acceptable to participants for monitoring purposes
to allow for more personalized support.

Limitations and Future Work
Although our initial results are promising, there are some
limitations that should be mentioned. First, the participants
self-reported alcohol consumption and the timing of starting
and stopping drinking, which might result in recall biases
because of the retrospective nature of self-reports. Second,
phone sensors, although useful, cannot capture and infer all
relevant behaviors associated with a drinking event. Third, some
aspects of drinking event planning are not manifested in outward
behaviors (eg, subjective craving). Fourth, we successfully built
a population model to predict non-drinking events, low-risk
drinking events, and BDEs in young adults; however, there
might be individual patterns that our population model cannot
capture, which may limit the generalizability of our model. In
future work, we will collect a larger data set per participant with
the integration of other phone data (eg, social media posts) and
investigate the use of more personalized individual models. Our
analyses focused on calls (incoming or outgoing) and SMS text
messages as the main form of communication rather than
communication through social media apps. Personalized models
could result in a more accurate prediction system at the
individual level.

As is the case for any predictive model, deployment will result
in some false positive and false negative predictions of drinking
or BDEs. The potential “cost” of a false positive is that an
intervention may not only be delivered without need, bothering
an individual when irrelevant and degrading credibility, but also
may lead someone to consider drinking when they did not
originally intend to drink. Alternatively, not delivering an
intervention when an opportunity to do so occurs (false negative)
could result in perceived program unreliability; therefore, this
should also be taken into account when selecting the optimal
model.
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The studied sample comprised young adults who screened
positive for hazardous drinking and were recruited from an
urban area in western Pennsylvania. As such, the findings may
not be directly applicable to other age groups, those with lower
levels of drinking, and those from rural areas with different
activity patterns.

We position our work as a feasibility study, as our study
population was limited to young adults. As we would expect
that both the phone use behaviors and the drinking behaviors
of young adults will differ from those of older adults, we do not
claim that our approach or results will be generalizable to a
population with different demographics. Instead, we suggest
that future work needs to replicate the data collection and
analyses reported here on a study population with a wider range
of demographics. This replication will determine how
generalizable our results are, both with a larger and more
heterogeneous young adult population and with an older adult
population.

The XAI-integrated BDE model we developed could allow
clinicians to assist in designing JITAIs for preventing imminent
BDEs and thus their potential negative consequences. The

specific sensor features contributing to high model performance
highlight the potential for interpreting young adults’ behaviors
only using smartphones in an unobtrusive way. As such, it
should enable clinicians to derive advanced strategies for JITAI
for young adults to prevent the onset of a BDE.

Conclusions
To the best of our knowledge, this is the first study to attempt
to develop a prediction model of same-day imminent BDE
events using smartphone sensor data with a maximum accuracy
of 95% (weekend model), which outperformed a baseline model
that used only day of the week to predict same-day drinking in
young adults. The best-performing prediction model was the
XGBoost, using a 9-hour and 12-hour analysis window size at
a prediction distance of 6 and 3 hours before the onset of a BDE
on weekdays and weekend, respectively. To improve
interpretability of the BDE model, we applied XAI (eg, SHAP
and PDPs) to determine key features and their contributions.
The “windows of opportunity” and the key contributors (eg, the
time of day, radius of gyration, and acceleration of movement)
can be used by clinicians for designing JIT messaging to prevent
imminent BDEs in young adults.
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