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Abstract—Ocular biometrics in the visible spectrum has
emerged as an area of significant research activity. In this paper,
we propose two convolution-based models for verifying a pair of
periocular images containing the iris, and compare the two ap-
proaches amongst each other as well as with a baseline model. In
the first approach, we perform deep learning in an unsupervised
manner using a stacked convolutional architecture, using external
models learned a-priori on external facial and periocular data, on
top of the baseline model applied on the provided data, and apply
different score fusion models. In the second approach, we again
use a stacked convolution architecture; but here, we learn the
feature vector in a supervised manner. We obtain an AUROC of
0.946 and 0.981, and EER of 0.092 and 0.066, for the two models
respectively. We further combine the two models, and observe the
combined model to deliver the best performance in case the both
the images arise from the same device type, but not necessarily
so otherwise, obtaining a AUROC of 0.985 and EER of 0.057.
Given the significant performance our methodology yields, our
system can be used in real-life applications with minimal error.

I. INTRODUCTION

Identifying individuals as genuine versus impostors, using
facial features such as matching of the iris, periocular region
and face, have emerged as areas of research interest. In this
paper, following the definition given by [1], the term periocular
means the area surrounding the eye as well as the eye - i.e.
containing the iris and sclera also. The qualitative problem at
hand is of verifying whether a pair of periocular images taken
in the visible spectrum belong to the same person or not.

As the computer vision and image processing techniques
have matured with time, several novel approaches towards this
problem (and closely related problems) have been recently
introduced by different schools of research. Early works by
Park et al., such as [2] and [1], have established the feasibility
of using periocular images for identification. Prior works, such
as [3] evaluated the utility of the periocular region appearance
cues for biometric identification. Recently [4] reviewed the
research progress in the area and discussed existing algorithms
and the limitations of each of the biometric traits and in-
formation fusion approaches. In terms of iris segmentation,
[5] presents an unsupervised iris defects detection method
based on the underlying multispectral spatial probabilistic iris
textural model. For iris recognition in the visible spectrum,
[6] describes an integrated scheme for noisy iris recognition
in adverse conditions. For mobile devices in particular, [7]
proposes a system that combines the recognition of user’s
iris and user’s devices for authentication of users and [8]
proposes a fusion of face and iris features for recognition.

In the recent ICIP periocular identification challenge [9], a
database with the title VISOB was provided, and a number of
approaches of identifying individuals were presented, where
the images were collected under different lighting conditions,
namely daylight, dim light and office lighting, and different
devices, namely Oppo mobile phones, Samsung mobile phones
and Apple iPhones. Deeply coupled auto-encoders [10] and
deep sparse filter [11] based approaches were observed to have
outperformed the remaining approaches, such as the 2-phase
approach by Ahuja et al. [12] that uses a multinomial Bayesian
Learning followed by Dense SIFT.

In this paper, we propose two models to solve the problem
at hand. Both the models are based on deep convolutional
neural networks (CNN), and both the models use a stacked
layer architecture. Further, we treat the well-known Root SIFT
method [13] as a baseline approach to solve the problem. Root
sift calculates the image descriptor of the iris images given
as part of the MICHE dataset, and subsequently matches an
image with the other using a k-nearest neighbor approach.

In the first approach, we combine the baseline Root SIFT
method with two external (pragmatic) knowledge sources. The
first one is a 128-sized feature vector obtained from OpenFace
[14], which is a general-purpose library for face recognition.
The other pragmatic knowledge source is the VISOB dataset
[9], which provides images of the periocular region. We use
a 1024-sized feature vector of the periocular region, obtained
by training on this dataset. We combine these three, namely
the Root SIFT, feature vector of VISOBNet and that of the
OpenFace, and combine the scores assigned by each of these
three subsystems, to calculate a dissimilarity score, using
simple averaging as well as linear regression based techniques.
Thus, the first model is an unsupervised one, with respect to
the provided MICHE-II database.

In the second approach, we avoid using external a-priori
knowledge, and solely rely upon the provided MICHE-II
dataset to perform CNN-based deep neural network learning,
using a supervised approach. We pass each training image
through a 4-convolution CNN network, and subsequently
create a 512-sized feature vector for each training image.
For each test image, we construct its 512-feature vector, and
compare this vector with each of the training vectors using
cosine similarity, to find the best-match image. Note that, in
both the models, we generate data using known augmentation
techniques, to further improve the performance of our system.
On the provided MICHE-II test dataset, we obtain an AUROC
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[7] of 0.946 and 0.981, and EER [9] of 0.092 and 0.066,
for the two models respectively, when testing under the same
device constraint. We also combine the two models, and
observe that, the combined hybrid model outperforms all the
remaining models, to deliver the most optimal performance
under the same device constraint, achieving an EER of 0.057
and AUROC of 0.985. The high performances that our models
yield, pose these models as reasonable candidates for deploy-
ing in real-life applications.

Thus, the contributions of our work are as follows.
• We propose two novel convolution-based stacked deep

neural network models in order to compare a given peri-
ocular image containing the iris, with a set of periocular
images.

• We create a first CNN-based unsupervised model, fusing
the scores of two external feature vectors and a baseline
Root SIFT model.

• We create a second CNN-based supervised model, that
uses only the images from the MICHE-II dataset, and
uses a cosine similarity metric on the derived feature
vector for measuring similarity between image pairs.

• We provide an empirical comparison of the two ap-
proaches amongst each other as well as with a baseline
Root SIFT model. We observe the second model to out-
perform the first one, the combined model to outperform
the two independent models where the training and test
images stemmed from the same device type, and further
observe the baseline to be significantly outperformed by
both the models we propose.

The rest of the paper is as follows. The details of our
methodology, including the design principles and the models,
are presented in Section II. Section III explores the outcome
of applying our methodology on the given dataset. Finally,
we provide a brief discussion in Section IV and conclude in
Section V.

II. METHODOLOGY

We propose a baseline Root SIFT method and two further
models to achieve our objective of verifying individuals. In the
first model, we aim at learning an unsupervised metric [15],
that generalizes well across several data-sets. In this setting, no
training whatsoever is performed on the MICHE-II database
[16]. In the second model, we employ a supervised learning
paradigm that learns feature representation for comparison and
verification on the MICHE-II data-set.

A. Baseline Model

Inspired by SIFT based models for ocular biometrics in the
visible spectrum such as [9], [12] and [17], we make use of
Dense SIFT keypoints for matching irises. First, the iris is
extracted out of the image using the segmentation algorithm
described in [5]. The algorithm provides us with the segmented
and normalized iris image along with a defects mask. We first
overlay the segmented iris image with the binary mask to get
the iris image rid of any occlusions. We then compute Dense
color Root SIFT [13] descriptors which gives us keypoints
with identical size and orientation. The advantage of Root
SIFT over traditional SIFT [18] is that it employs a Hellinger

kernel instead of the standard Euclidean distance to measure
the similarity between SIFT descriptors. Matching between
descriptors is performed by comparing each local extrema
using a nearest neighbor matcher [19]. The dissimilarity score
d is given by:

d =

(
1− |Matches|

min(|KeyPts img1|, |KeyPts img2|)

)
(1)

B. Model 1

Figure 1 illustrates our proposed framework for Model 1.
The model consists of three integral parts for the purpose of
verification, namely OpenFace, Visobnet and RootSIFT.

1) OpenFace: OpenFace [14] is a general purpose face
recognition library. Given a facial image, it outputs a 128-
dimensional feature vector of that image. Although, it is
crafted for face verification, we find it to perform well for the
task of verification from partial face images as well. Therefore,
we input the whole MICHE-II test image to the deep neural
network without any preprocessing. OpenFace subsequently
outputs the predicted similarity score of two images by com-
puting the squared L2 distance between their representations.
Since the representations are on the unit hypersphere, the
scores range from 0 (the same picture) to 4.0. We then convert
the score to a range from 0 to 1 to get the dissimilarity score.
The use of OpenFace also helps us to compare as to what
extent can existing state-of-the art methods for face verification
be employed for the task of Ocular Bio-metrics.

2) VisobNet: Deep learning systems have achieved state of
the art accuracies in face recognition tasks [20]. However,
they require large a large training database to learn their
models. Alternatively, the use of transfer learning [21] is often
used to solve this problem. Here the feature representation
is learned on an external dataset. Motivated by the success
of such approaches, we employ a similar approach in which
we train our model on the VISOB Database [9]. The model
automatically learns appearance-based features by using a
deep convolutional Neural network. We train our CNN on
a multi-class face recognition task, namely to classify the
identity of the periocular image.

The overall architecture is depicted in Table I. First, the
periocular region is extracted from the given image by creating
a rough bounding box around the eye, the dimension of which
are given as a function of the iris center and radius returned
by Haindl et al. [5]. This RGB (3 channel) periocular image
is re-sized to 32 pixels × 48 pixels and given as input to
the convolution layer 1. We use a convolution kernel of size
3× 3 in all the convolution layers and the activation function
is ReLU [22] except in the last layer where we use a softmax
classifier [23]. The dense layers of the network represent the
fully connected layers. We train the CNN using Stochastic
Gradient Descent (SGD) [24] with standard back-propagation
and Momentum (set to 0.9) [25]. We train the model with a
learning rate of 0.01 for all layers and a batch size of 256
for 1500 epochs. We also employ data augmentation [26] to
increase the samples for training. We use the Keras library
[27] for training our model. We take the output of the Fully
Connected layer 1 to get the 1, 024-dimensional feature vector
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Fig. 1: Schematic representation of proposed model 1.

of the periocular image. We then compute the cosine similarity
[28] between the two feature vectors of the periocular images.

3) RootSIFT: This is the Root SIFT based baseline model,
described in II-A.

4) Score Fusion: We first normalize the scores [7] to bring
them within the fixed numerical range of [0,1]. We then
employ two approaches for score fusion. In the first approach
we simply take an average of all the scores. Hence, the model
and dissimilarity metric remains completely unsupervised. In
the second approach we train a linear regressor on 5% of the
total image pairs of the MICHE-II database [16]. Note that,
this is a supervised approach, carried out to compare its results
with the unsupervised verification metric.

C. Model 2

In this model we employ a supervised CNN to learn dis-
criminative feature representations from the MICHE-II dataset.
In the domain of face verification and other recognition tasks,
supervised methods tend to show a clear advantage over unsu-
pervised ones [15]. We train our model as a recognition system
on 80% of the MICHE-II dataset and use the remaining 20%
for validation. The details of our CNN Model are captured
in Table II. The advantage of employing appearance based
Convolution Neural Network is that it is able to visualize the
iris from periocular region on the fly without prior need for
segmentation. As MICHE-II dataset contains only a few over
3, 000 images, we resort to data augmentation to increase the
robustness and generality of our model. For data augmentation,
we rotate the image between 0 to 30 degrees, randomly
shift the images horizontally and vertically by 0.1 of their
total width and height respectively. We also flip the images
horizontally and also zoom it in between 0.7 to 1.3 times
it’s original size. The CNN model details are similar to
Section II-B2 in terms of learning algorithm, rates and kernel
sizes, with the only difference being that we train this model
for a 1, 000 epochs because it is shallower in comparison and
hence converges faster. The input of the model is a resized
RGB image from the MICHE-II data-set having dimensions
of 64×96, and it’s output is a 512 dimensional feature vector.

Similar to Section II-B2 we employ a cosine similarity to get
the similarity between two feature vectors.

D. Hybrid Model
This model is a amalgamation of our unsupervised and

supervised model. Here the score of Model 2 is used in
conjunction with the score of Model 1 to compute a fused
dissimilarity score.

III. EVALUATION

We evaluate the performance of the two proposed CNN-
based models, as well as the Root SIFT baseline model, on
the provided MICHE-II test dataset. For experiments, we use
a hardware configuration of Intel Pentium CPU 2020M @
2.40 GHz and 4 GB RAM. Our methodology for Model 1
achieves an execution time of approximately 1.7 seconds for
inference and 1,300 seconds to run the externally provided
segmentation method for a given image pair. As our Model 2
does not require any prior segmentation, it achieves a smaller
execution time of 0.6 seconds for verifying a given image pair.

A. Data Description
The training dataset, as well as the test dataset, are drawn

from the MICHE-II dataset, which in turn are taken from
the same paradigm as MICHE-I with respect to environment,
mode of capture etc. [16]. Two device types have been used
to capture the data in the MICHE-II test data-set, namely
Samsung Galaxy S4 and Apple iPhone 5. The training dataset
comprises of over 3, 000 images, across all environments,
devices and eyes (left/right), and has 75 distinct labels (unique
subjects). The provided MICHE-II test dataset comprises of
120 images of the left and the right eyes combined. While
some of the subjects present in it are part of the MICHE-II
training database, most of it’s subjects are new and mutually
exclusive from it.

B. Model Evaluation
A test verification process is carried out, by comparing

each test dataset image with one another, in all possible
combinations, under each of the above settings. We perform
empirical evaluation of our models under the following
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paradigms.

Same-Eye versus Cross-Eye: Under the same-eye
paradigm, we hypothesize that the left and right iris of
a given person are different from each other. Hence, we
compare the Left Eye Images with Left Eye Images and
Right Eye Images with Right Eye Images. Under the cross-
eye paradigm, we ignore the possibility that left and right
eyes could produce different features, and merge all the eye
images for the comparison. The rationale behind making
this apparently counter-intuitive assumption are to exploit the
following. (a) Data augmentation with horizontal flip: In the
data augmentation process during the deep CNN training, we
also perform horizontal flip of the images, thereby the left and
right eyes also getting ”interchanged” in the learning process.
(b) Feature similarity: In the given image dataset features, only
minor dissimilarities exist between left and right eye images of
most of the given persons. We observe similar performances
in these two paradigms.

Same-Device versus Cross-Device: Under the same-device
paradigm, we compare images taken from the same device
type with each other. That is, we compare images taken
from Samsung Galaxy S4 only with other images taken from
Samsung Galaxy S4, and images taken from Apple iPhone 5
only with other images taken from Apple iPhone 5. Under
the cross-device paradigm, we compare between the images
agnostic of the device type from which any of the images were
taken from. Note that, we experiment with both the same-
eye (SE) and cross-eye (CE) with the same-device (SD) and
cross-device (CD) paradigms, and observe similar performance
outcomes between same-eye and cross-eye testing, whereas
there is a stark improvement in results when migrating from
cross-device to same-device paradigm. This can be seen in
Tables III and IV which correspond to EER and AUROC
respectively for the various methods. Here, Model 1 LR
refers to the Linear Regression based supervised score fusion
technique, as opposed to EQ which refers to the unsupervised
average based score fusion. Figures 2, 3, 4, 5, 6, 7 and
8 showcase the ROC curves of the various methods discussed
in Section II. In these figures, the label Default corresponds
to the CD SE paradigm, and Same Device corresponds to the
SD SE paradigm. For our hybrid model we achieve an EER
of 0.352 and 0.057, and AUROC of 0.736 and 0.985 in the
CD SE and SD SE paradigms respectively. The FAR-FRR
Curve for this can be found in Figure 9.

IV. DISCUSSION

As shown in Section III, our system delivers a stark im-
provement over the baseline approach. This can be attributed
to the use of deep learning neural network models. While
supervised models clearly outperform the unsupervised ones,
it is interesting to note that unsupervised models learnt on
different (external) datasets also provide reasonable accuracy,
when applied on the current dataset. One interesting observa-
tion is that OpenFace, a model created for facial recognition,
performs reasonably well on the MICHE-II test database,
where only partial faces are visible. The success of such
models, opens further avenues such as using of pre-trained

Layer Output Shape Params
convolution2d 1 (32, 32, 48) 896

activation 1 (32, 32, 48) 0
convolution2d 2 (32, 30, 46) 9248

activation 2 (32, 30, 46) 0
maxpooling2d 1 (32, 15, 23) 0

dropout 1 (32, 15, 23) 0
convolution2d 3 (64, 15, 23) 18496

activation 3 (64, 15, 23) 0
convolution2d 4 (64, 13, 21) 36928

activation 4 (64, 13, 21) 0
maxpooling2d 2 (64, 6, 10) 0

dropout 2 (64, 6, 10) 0
convolution2d 5 (128, 6, 10) 73856

activation 5 (128, 6, 10) 0
convolution2d 6 (128, 4, 8) 147584

activation 6 (128, 4, 8) 0
maxpooling2d 3 (128, 2, 4) 0

dropout 3 (128, 2, 4) 0
flatten 1 (1024) 0
dense 1 (1024) 1049600

activation 7 (1024) 0
dropout 4 (1024) 0
dense 2 (586) 600650

activation 8 (586) 0
Total params 1937258

TABLE I: Our architecture for Visobnet features. The output
size is given by filters×rows×cols.

Layer Output Shape Params
convolution2d 1 (32, 64, 96) 896

activation 1 (32, 64, 96) 0
convolution2d 2 (32, 62, 94) 9248

activation 2 (32, 62, 94) 0
maxpooling2d 1 (32, 31, 47) 0

dropout 1 (32, 31, 47) 0
convolution2d 3 (64, 31, 47) 18496

activation 3 (64, 31, 47) 0
convolution2d 4 (64, 29, 45) 36928

activation 4 (64, 29, 45) 0
maxpooling2d 2 (64, 14, 22) 0

dropout 2 (64, 14, 22) 0
flatten 1 (19712) 0
dense 1 (512) 10093056

activation 5 (512) 0
dropout 3 (512) 0
dense 2 (75) 38475

activation 6 (75) 0
Total params 10197099

TABLE II: Our architecture for Model 2-based CNN. The
output size is given by filters×rows×cols.

METHOD CD CE CD SE SD CE SD SE
Root SIFT 0.508 0.517 0.518 0.554
Visobnet 0.421 0.435 0.116 0.120
OpenFace 0.360 0.354 0.147 0.148

Model 1 LR 0.368 0.369 0.139 0.139
Model 1 EQ 0.409 0.417 0.106 0.092

Model 2 0.271 0.278 0.067 0.066

TABLE III: Equal Error Rate

METHOD CD CE SD SE SD CE CD SE
Root SIFT 0.500 0.453 0.486 0.486
Visobnet 0.637 0.924 0.928 0.623
OpenFace 0.619 0.924 0.922 0.694

Model 1 LR 0.691 0.956 0.956 0.688
Model 1 EQ 0.664 0.946 0.948 0.653

Model 2 0.827 0.981 0.984 0.815

TABLE IV: AUROC
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Fig. 2: OpenFace ROC

Fig. 3: Model 1 EQ ROC

models - trained on a larger (external) dataset, albeit for a
slightly different task such as face or periocular recognition,
and fine-tuning its last layers for addressing the complexities
of the target dataset; thus maintaining the generality and
robustness of the system, and at the same time fitting the
model better for the target dataset. It will also be of interest to
explore feature embeddings that directly correspond to image
similarity, such as the Weighted X2 distance.

Fig. 4: Model 1 LR ROC

Fig. 5: Model 2 ROC

Fig. 6: Root SIFT ROC

V. CONCLUSION

In this paper, we proposed a baseline model, namely Root
SIFT, and two stacked convolution-based deep learning learn-
ing models, for identifying an individual from a periocular
image. This was obtained by training the CNNs on a given
set of periocular images as part of the learning phase, and
verifying a pair of images during the testing phase.

Our first model, an unsupervised one, exploited a-priori
knowledge to perform transfer learning, stemming from (a) a

Fig. 7: Visobnet ROC
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Fig. 8: Hybrid Model ROC

Fig. 9: Hybrid Model FAR-FRR in the SD SE paradigm

128-dimensional facial feature vector exposed by OpenFace
[14], and (b) a 1, 024 dimensional feature vector of the
periocular region trained on VISOB database [9]. It obtained
similarity scores for each source-target pair using each of the
two methods, used Root SIFT on the provided (MICHE-II)
test data to obtain a dissimilarity score, and finally applied
an average-based and a linear regression based score fusion
technique to identify the best-matching source-target pair. The
second model, on the other hand, used a 4-layer stacked
convolution network followed by a 512-dimensional feature
vector for supervised learning, and used cosine similarity
for testing purposes. The first model produces a best-case
AUROC of 0.956 and EER of 0.092, and the second produces
a best-case AUROC of 0.981 and EER of 0.066, respec-
tively. Both significantly outperform the baseline Root SIFT
method applied on the provided data, which yields a best-
case performance of 0.453 and EER of 0.554. Further, a
combination of the two models, is observed to deliver the best
performance, under the constraint that the training and test
data arise from the same device type, achieving an AUROC
of 0.985. The encouraging performance delivered by both our
models, signify the potential of these models as candidates for
deployment in real-life applications.
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