
57

EyeSpyVR: Interactive Eye Sensing Using Off-the-Shelf,
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Low cost virtual reality (VR) headsets powered by smartphones are becoming ubiquitous. Their unique position on the
user’s face opens interesting opportunities for interactive sensing. In this paper, we describe EyeSpyVR, a software-only eye
sensing approach for smartphone-based VR, which uses a phone’s front facing camera as a sensor and its display as a passive
illuminator. Our proof-of-concept system, using a commodity Apple iPhone, enables four sensing modalities: detecting when
the VR head set is worn, detecting blinks, recognizing the wearer’s identity, and coarse gaze tracking - features typically
found in high-end or specialty VR headsets. We demonstrate the utility and accuracy of EyeSpyVR in a series of studies with
70 participants, finding a worn detection of 100%, blink detection rate of 95.3%, family user identification accuracy of 81.4%,
and mean gaze tracking error of 10.8° when calibrated to the wearer (12.9° without calibration). These sensing abilities can be
used by developers to enable new interactive features and more immersive VR experiences on existing, off-the-shelf hardware.
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1 INTRODUCTION
Smartphone-based virtual reality (VR) headsets have become increasingly popular since the introduction of the
Google Cardboard [14] in 2014. These devices adapt a user’s existing smartphone into a powerful VR headset,
taking advantage of the phone’s existing sensing and rendering capabilities to enable rich VR experiences, without
the expense and complexity of a dedicated VR headset.
Eye sensing has been shown to be a powerful and useful input modality in VR experiences, ranging from

foveated rendering of complex scenes, to social VR applications and gaze-responsive non-player characters
(NPCs) in games [4, 12, 37]. However, existing VR eye sensing approaches require special illumination and sensors
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Fig. 1. Example image from a smartphone’s front facing camera when placed into a VR headset.

[10, 17], or even instrument the eye itself [39], which is incompatible with a commodity smartphone approach.
Furthermore, commercial eye trackers such as FOVE [10] and Tobii eye tracking for HTC Vive [38] generally cost
hundreds to thousands of dollars. Ideally, we want a way to robustly sense a wearer’s eye using only a phone’s
built-in hardware.

In this work, we show how a smartphone inserted into a VR headset can capture a user’s left periocular region
through its front-facing camera, as shown in Figure 1. Additionally, we can utilize the screen as an illumination
source. Note that unlike e.g., traditional gaze estimation approaches, illumination from the screen does not appear
as a well-defined "eye glint", and instead appears as a large reflection on the pupil (Figure 1, highlighted in blue).
Furthermore, the screen also produces a reflection on the inexpensive optics of commodity VR headsets (often
plastic lenses of poorer optical clarity; Figure 1, outlined in red). Figure 2 offers other challenging examples
stemming from poor VR headset misalignment, camera autofocus issues, and low illumination due to dark screen
contents.
Nonetheless, we show that these images of the eye can enable four interesting sensing modalities: worn/not-

worn detection, blink detection, user identification, and coarse gaze estimation. Our approach must contend
with a number of technical challenges, including non-uniformity of the light source, occlusion of the pupil by
reflections, and inconsistent sensor placement. We describe our software-only eye sensing implementation —
which we call EyeSpyVR — and present the results of a series of studies involving 70 participants. We demonstrate
useful eye-sensing capabilities without requiring additional or specialized hardware, allowing advanced features
to be enabled with little more than a software update. We envision VR application developers leveraging these
techniques to open new interactive possibilities and more immersive VR experiences on commodity VR headsets.

2 RELATED WORK
We now briefly review the literature that most directly intersects with our focus of work — blink detection, gaze
tracking, and eye-based authentication and identification — especially systems with a low-cost dimension.
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Fig. 2. Examples of challenging images, from left to right: headset misaligned, image out of focus, and low illumination.

2.1 Blink Detection
Blink detection has been used in a wide range of applications. For example, [19] used it to measure drowsiness,
with a particular focus on driver safety. Voluntary blinks have also been used extensively as a control mechanism
in the accessibility literature (see e.g., [25]). Blink patterns have also been used to measure engagement and
attention [35], as well as infer activity [18]. These example applications can now be enabled in low-cost VR
experiences with our approach. Also related to our technical approach are computer-vision-based techniques,
such as Lalonde et al.[26], which detected blinks using SIFT based features, and [3], which used active appearance
models. Most related to our work is LiGaze [27], which instrumented a VR headset with four photodiodes to
detect blinks by analyzing reflected light intensity. Lastly, Electrooculography (EOG) sensing has also been
explored for interactive use [36].

2.2 Gaze Tracking
Gaze sensing has been used extensively in the field of HCI [33], most often to infer a user’s area of attention.
While there has been much work on gaze estimation using specialized hardware [16, 29], recent work has also
demonstrated gaze tracking on mobile platforms, underscoring that the requisite computer power is available
[1, 23]. To achieve high precision, head mounted systems are popular, as they offer close and stable views of the
eyes (see e.g., [11]). More specifically in the VR domain, [32] showcases various interaction techniques powered
by eye-gaze in immersive VR experiences. There are also commercial systems, such as SMI and FOVE, that offer
high-quality gaze estimation for specialty applications. Please also see [21], which provides a comprehensive
survey of eye-gaze tracking in consumer platforms. In the research literature, systems such as LiGaze [27], Parallel
Eyes [22] and EyeContact [39] all rely on special hardware - photodiodes, infrared cameras and special contact
lenses respectively. In contrast, we use smartphones that users already own, and thus offer a zero-cost solution.

2.3 Identification and Authentication
Human eyes are highly varied and can be used to identify and authenticate users. Typically the ocular region is
used, which includes the pupil, sclera, conjunctival vasculature and iris. Geometric [30] and deep learning [2]
based approaches have both proven effective (see [34] for a survey), and studied extensively for smartphone use
[2, 6, 20, 34]. The literature on authentication in VR experiences is more nascent. Traditional PINs and passwords
have been explored [13], as have as bio-acoustics [28]. Closest to our work is [40], which use a head worn system
to track eye movement behavioral biometrics. However, to our knowledge, no VR work has leveraged eye image
features for authentication or identification.
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3 IMPLEMENTATION
Our prototype system uses an iPhone 7 inserted into a $10 VR Box headset [5], seen in Figure 3. To simplify
development and debugging, we configured the iPhone to stream its front camera to a desktop computer over
WiFi, which performs video processing and classification.

Fig. 3. Left: User wearing VR Box headset. Right: Top down schematic view of the VR headset when worn. The smartphone
(blue) camera (red) has a field of view (green) that encompasses one of the headset’s two lenses (pink), allowing it to see one

of the wearer’s eyes.

Our processing pipeline begins by detecting whether an eye is present in the camera’s field of view. For this
decision, we train a linear-kernel SVM classifier on the RGB histogram of the image (768 features total). If the
system detects that an eye is present, meaning that the headset is worn, the system then segments the eye from
the image for later processing. This is done by using the Hough Circle transform [9] to identify the eye’s lens,
after which the eye region is cropped.
Once the eye is segmented, we extract more detailed features that help us detect gaze direction and perform

biometric identification. These eye features are computed using a convolutional neural network (CNN). CNNs
have been successfully applied to many image processing problems, including eye-gaze direction in distant
camera images [23]. In general, CNNs require large amounts of data in order to provide good results [24]. To
circumvent this data requirement, we leverage an existing model architecture and weights from [2], which used
periocular eye images captured from smartphone cameras to perform biometric identification. This network is
state of the art for mobile ocular biometrics on the VISOB [34] and MICHE [7] databases. Using this model as a
starting point, we then train our own custom CNNs for blink detection, user identification, and gaze detection
using Stochastic Gradient Descent with standard back propagation and momentum, with a learning rate of 0.01
for all layers, and a batch size of 128 for 1000 epochs. This model architecture is shown in Figure 4.

For blink detection, our CNN is trained as a binary classifier: eye opened or closed. For user identification, we
train the model as a multiclass classifier, and using the last layer as an eye representation vector. This means
no training is needed to enroll a new user; only the user’s eye representation needs to be calculated through a
forward pass. Then, using this representation vector, we can compute the cosine similarity between eyes, and in
turn, classify a wearer as either genuine (using a database of known eyes) or as an impostor by thresholding
the score (calibrated to minimize the equal error rate). We also note that it is common for VR devices to be
used among families and close circles of friends. For such scenarios, we train a linear-kernel SVM on the eye
representation vectors of enrolled users to perform identification among a small set of users.
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Finally, for gaze tracking, we train our model as both a classifier and as a regressor. In the former case, we
train a model as a multiclass classifier to predict one of five gaze locations on the screen. For the regressor, we
train a model with a continuous output to minimize the mean gaze angular error. To calibrate per user, we first
train a master, person-independent CNN for gaze angle, and then fine-tune the CNN for each user by freezing
the weights of the convolutional layers and adjusting only the last layer. This allows us to make rapid updates to
a pre-trained model using only a small amount of user data. To collect user data, we capture periocular images of
users while they wear the VR headset and follow a red dot with their eyes, which appear in one of five positions.

As noted previously, our current approach runs on a laptop CPU (dual core i7, 2.8 GHz, no GPU acceleration),
which facilitated rapid development and testing. On this laptop, we achieve 31.1 FPS for eye region segmentation.
Worn detection is very fast, under 1 ms of execution time. Once the system detects the VR headset is worn,
the blink, identification and gaze processes execute, which run at 22 FPS. Our camera stream runs at 30 FPS,
so we are just under the native frame rate when all processes are running. We have no doubt this could run
at interactive speeds on modern smartphones with some tuning; other work has already demonstrated such
speeds with similarly complex CNNs [23]. Also, our models are 82 MB in size, making it practical to load onto a
smartphone. Thus in a commercial implementation, we envision all processing occuring on the phone.

Fig. 4. Architecture of our CNN models. We train different models for detecting blinks, gaze location and user identification.

4 EVALUATION
We performed a series of studies to evaluate the accuracy and performance of EyeSpyVR. In all cases, we use
an Apple iPhone 7 and VR Box headset. During data collection, participants were allowed complete freedom
to move around and no restrictions were placed on their head movements. When donning the headset, we told
participants to find a position that was most comfortable for them, and encouraged them not to adjust the headset
once data collection began (note that between sessions, the headset was removed). Participants were drawn
from the local population; all had used smartphones, but most did not have any experience with VR systems. All
participant data was collected indoors in a lab setting.

4.1 Study 1: Worn Detection & Blink Detection
For our first study, investigating worn detection and blink detection, we recruited 10 participants (2 female, mean
age 26, SD 3.3). To start, participants were asked to wear the VR headset and the VR interface instructed the user
to keep their eyes open and look straight ahead. After a brief pause, ten images were captured at 200 ms intervals.
The VR interface then instructed the user to close their eyes. After a brief delay, ten images of the user’s closed
eyes were taken. This completed one phase of data collection, which was repeated twice more. Between phases,
participants removed the VR headset to add variability and realism to the data set.
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We also collected 2000 images when the headset was not worn across several environments, including indoors
with the lights on, indoors with the lights off, outdoors while standing, and outdoors while walking.

4.2 Study 2: User Identification & Gaze Estimation
For our second study, which evaluated user identification and gaze estimation, we recruited 63 participant (12
female, mean age 31, SD=6.5). Each participant completed two sessions, 10 minutes each, on consecutive days.
Data from two participants had to be dropped due to poor/incorrect headset placement (i.e., the eye was only
partially visible), and one other participant was dropped due to poor illumination, resulting in data from 60
participants.
This study consisted of three capture sessions. Between Sessions 1 and 2, there was a 2 minute break with

the headset off. Between Sessions 2 and 3, there was a one day break, adding additional variability. Within each
session, we ask the wearer to gaze at a red dot presented on the screen in one of five locations: top-left (-18° yaw
left, 10° pitch up), top-right (+18°, +10°), center (0°, 0°), bottom-left (-18°, -10°), and bottom-right (+18°, -10°). For
each requested dot, we wait one second, and then we capture 5 images of the eye at 300 ms intervals. Not only
does this data allow us to evaluate gaze estimation, but also provided a diverse set of images for testing user
identification at different gaze angles (i.e., as opposed to looking just straight ahead). An example of this data can
be seen in Figure 5, where different parts of the iris and conjunctival vasculature is visible for each gaze point. In
total, we collected 5 × 5 = 25 images per session, × 3 sessions, resulting in a total of 4500 images from our 60
participants.

Fig. 5. Example images of a user gazing at our five test targets.

5 RESULTS

5.1 Worn Detection
To evaluate worn vs. not worn detection, we used two datasets. The first set contained images we captured
when the headset was not worn by any participant (2000 images). The second set included all of the images
from our first, ten-person user study (600 images). We trained and tested our worn-detection classifier using
leave-one-person-out cross-validation. Across all users, accuracy was 100%, suggesting immediate feasibility.

5.2 Blink Detection
To evaluate the performance of our blink classifier, which predicts if the eyes are opened or closed, we again used
a leave-one-person-out cross-validation analysis. This test-train procedure was repeated once per test participant,
and the resulting accuracies were averaged. Across our ten participants, our classifier achieved a mean accuracy
of 95.3% (SD = 0.11). Our average precision was 94.9%, with an average recall of 96.0%. This compares favorably
to the next closest work, LiGaze [27], which reported 83% precision and 80% recall.
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5.3 User Authentication
EyeSpyVR supports both user verification, which determines if a user is genuine, and user identification, which
distinguishes a person from among a small pool of potential users.
For user verification, we trained the system with user enrollment. We first train a model as a multi-class

classifier on a set of 40 randomly-selected users (out of our 60 study participants). We use Sessions 1 and 2 as
training (2000 images in total) and Session 3 for validation (1000 images in total). We use the resulting trained
CNN to compute eye representation vectors, which are then used for cosine similarity (see Section 3 for more
details). We then use this model, and the remaining (i.e., holdout) 20 users for testing our verification system.
Specifically, we use Session 1 and Session 2 data (1000 images) as enrollment and Session 3 data (500 images) for
verification. The results are plotted in Figures 6 ("All Gaze Points") and 7. The Area Under Receiver Operating
Curve (AUROC) attained by our system is 0.84 (for reference, MicheNet is 0.74). If we limit enrollment and testing
to matched gaze direction instances (e.g., straight ahead gaze images with straight ahead gaze images), AUROC
increases to 0.87 (MicheNet similarly increases to 0.77). See "Matched Points" in Figure 6 and Figure 8.

Fig. 6. Equal Error Rates Verification. Fig. 7. Cumulative Match Curve for All
Gaze Points.

Fig. 8. Cumulative Match Curve for
Matched Gaze Points.

Finally, we tested our system’s performance for user identification, simulating family units of size four, following
the procedure in [15]. Similar to the verification study, we train our model on 40 random participants to learn
eye representations, and keep 20 participants’ data for testing. We then simulated 1000 virtual families, in which
we randomly pick four participants (out of the 20 holdout participants) to become a family. We train on family
members’ data from Sessions 1 and 2 (200 images) and test on Session 3 (100 images). This process revealed an
overall identification accuracy of 81.4% across 1000 simulated rounds. Although falling short of commercial-level
accuracy, we do believe this result illustrates that useful signal is present and future work could unlock superior
accuracies.

5.4 Gaze Estimation
We first evaluated our person-independent gaze tracking accuracy using leave-one-person-out cross-validation,
achieving a mean accuracy of 90.8% for predicting gaze across our five targets. We then evaluated the accuracy of
the same model, but calibrated with per-user data. Specifically, for each user, we trained the CNN generically on
59 participants’ data, same as a leave-one-person-out testing approach. Then, we fine-tuned the CNN on data
from a participant’s Sessions 1 and 2, and test on data from Session 3 (captured a day later). Overall, this achieves
a mean accuracy of 95.3% on the five gaze targets.

To evaluate our eye gaze regressor, we measured the angular error between the reported gaze position and the
actual gaze position, and averaged the angular error across all trials. We obtained a person-independent gaze
accuracy of 12.9° using leave-one-person-out cross validation. After per-user calibration (see above), we achieved
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Fig. 9. Per-user calibrated gaze accuracy across five points. Red cross-hairs are ground truth.

an angular error of 10.8° when trained on Sessions 1 and 2, and tested on Session 3. The latter per-user calibrated
results are plotted in Figure 9 (all paticipants’ data superimposed).
As before, we can compare our results to LiGaze [27], which achieved 10.1° cross-user accuracy using a

VR headset instrumented with photodiodes. However, we note that devices using special-purpose infrared
emitters and cameras, such as FOVE[10], offer accuracies on the order of 1°, but cost at least hundreds of dollars.
EyeContact[39] offers even higher accuracies (0.09°), though this requires wearing a special contact lens.

6 DISCUSSION
We envision EyeSpyVR enhancing a wide variety of VR experiences (see also Related Work). For instance, worn
detection can be used as a clutch, triggering interactive content the moment the headset is worn, creating more
personal and cinematic experiences. Likewise, content or game-play could be automatically paused upon removal
of the headset. Blink and gaze tracking are a potent combination. They could, for example, be used to infer
cognitive state, such as attention and boredom, which could e.g., dynamically alter game elements. Blink and
gaze are also powerful social signals, and could also be used to create more authentic social VR experiences,
where avatars match their wearer’s eye behavior and perhaps even allowing for mutual gaze between remote
participants.

Commodity smartphone VR systems typically lack accessory controllers found in their higher-end counterparts.
Thus gaze tracking (in concert with a selection mechanism like dwell) could offer an additional input means
[8, 32]. Gaze tracking could also be valuable in creating accessible VR experiences for those with motor disabilities.
Additionally, a major limitation of smartphone VR headsets is their limited battery and rendering power (compared
to dedicated VR headsets tethered to powerful desktop computers). To mitigate this, worn detection could be
used to preserve limited battery power, rendering no content when no user is looking. By tracking gaze with
EyeSpyVR, foveated rendering [31] could allow for lower-fidelity rendering imperceptible to the user, again
saving power and execution time.

Finally, user identification could be used to secure VR devices, applications and files from unwanted interlopers.
It could also be used to automatically load profiles for users on a shared device, e.g., favorite programs and
resuming media and games at user-specific points. Likewise, parameters such as interocular distance and motion
sickness mitigations could be loaded seamlessly without user intervention.
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Although EyeSpyVR brings new capabilities to light for inexpensive, commodity hardware, there are several
important limitations. Foremost, while our accuracy results are encouraging, they are not at levels seen in
dedicated eye sensing systems. Thus low cost comes with reduced performance, which developers (and users)
will have to accommodate. Additionally, due to the horizontal placement of smartphones in most commodity VR
headsets, only one eye can be seen by the front facing camera. For many applications, this is sufficient, as users
typically blink with both eyes and gaze approximately in the same direction. However, it may produce inaccurate
gaze data if users look at very close virtual objects. This limitation might be overcome by placing a fish-eye lens
in front of the smartphone camera to expand its field of view to both eyes. We also found that some smartphone
VR headsets occlude the front facing camera, often with some type of bracket to secure the phone. Similarly, some
smartphones place their front facing cameras at the edges, which may provide a suboptimal view of the eyes.

7 CONCLUSION
We have presented our work on EyeSpyVR, an eye sensing approach that works with low cost, smartphone-based
VR headsets, enabling a suite of useful eye sensing modalities, including worn/not worn detection, blink detection,
user identification and eye gaze tracking. This is achieved with no special hardware, and most off-the-shelf
smartphone-based VR headsets should be compatible with our approach. We devised a robust, generalizable
CNN-based method, learning features from images of the periocular region as captured by a smartphone camera.
We ran two user studies, including 70 participants, to validate our prototype implementation and technical
approach, demonstrating the feasibility of EyeSpyVR.
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